
KolibriOS eXecutable (KX)
File Format & Loadtime

Specification

version 0.0

by Kenshin

February 2021

Contents
Introduction...3
KX File Format Specification..4

KX Header...4
KX Flags..4
Data Compression..5
KX Subheader...6
Chunks...6

Type 0x00 – Default Entry Point...7
Type 0x20 – General Executable File Attributes...7
Type 0x40 – Main Thread Stack Size..8
Type 0x60 – Initial Process Memory Size...8
Type 0x80 – Single-Library Import Table...9
Type 0xA0 – Brief (Short) Description...10

KX Loadtime Specification...11
Pre-Runtime For KX Type 0..11
KPRD0 (KX Pre-Runtime Data 0)..11

Introduction
KolibriOS eXecutable File Format (KX) is an executable file format for

KolibriOS operating system, which was developed to be as compact as possible and
with capabilities of being improved and extended in future versions. This specification
describes and defines structure of KX files and also defines principles of loading and
executing such files. Though this document is not approved by any standards
organization, any program, application or software component that works with KX
files should follow statements of this specification to avoid incompatibility problems
and similar issues.

KX file format was made for KolibriOS – a 32-bit operating system for personal
computers with x86-compatible processor architecture written in flat assembler, so
hereafter x86 and Asm-related terminology will be used. All offsets in this document
are in hexadecimal form and are like +0xnn/+0xnnnnnnnn and so on. Other hex
numbers use the same notation. Binary numbers are postfixed with «b» and look like
nnb/nnnnnnnnb, etc. Decimal numbers have no prefix/postfix. The specification uses
following data types or data size specifiers or data units:

• utf8_str – UTF-8 string

• utf8z_str – null-terminated UTF-8 string

• byte – unsigned 8-bit integer

• word – unsigned 16-bit integer

• dword – unsigned 32-bit integer

• qword – unsigned 64-bit integer

• s_byte, *s_word, s_dword, s_qword – signed byte/word/dword/qword

For all data in a KX header and a subheader following rules apply:

• 16/32/64-bit integers must be in LE (Little Endian) byte order
• strings must be in UTF-8 encoding with valid characters and without BOM

(Byte Order Mark)
Other data and strings in KX file may have any encoding, byte order or aligning

which software developers find appropriate for use.

KX File Format Specification
Every KX file consists of two or three parts: a header, an optional subheader

and code/data. They stored in a file in quite obvious order. The header starts a file,
after that (if used) the subheader goes, and then code/data. Simple KolibriOS
applications/programs may use only the header, followed by the entry point of code
(thus, entry point = 0x00000004) and the rest of code/data. The term code/data used
throughout this document, because the Specification doesn’t regulate how portions of
code and data must be organized in an KX executable file.

KX Header
The header is what every KX file is started with. It has following structure:

Offset Size and data type Field name Description
+0x00 utf8_str (2 bytes) kx_magic KX signature. Must be 0x584B ("KX").

+0x02 1 byte kx_version

This byte has form XXXXYYYYb,
where XXXX bits is major version
number, and YYYY is minor version
number. Must be 0 for current version.

+0x03 1 byte kx_flags Bit flags (see KX Flags section).

The header has size of 4 bytes. If the subheader flag is set, right after it
subheader chunks are being stored.

KX Flags
The KX bit flags look like FEDCCBBAb, where:

• A – a subheader flag:

• A = 0 – no subheader

• A = 1 – the subheader is used

• BB – a subheader chunks flag:

• BB = 00 – chunk_type/chunk_data_size is 8-bit

• BB = 01 – chunk_type/chunk_data_size is 16-bit

• BB = 10 – chunk_type/chunk_data_size is 32-bit

• value 11 of BB flag is reserved

• this flag doesn’t have any meaning when A flag is cleared, however if
A = 0, BB have to be zeroed too

• CC – common compression flag:

• CC = 00 – no compression

• CC = 01 – the kpack compression is used

• other values of CC flag are reserved

• D – a subheader compression flag:

• D = 0 – the subheader is not compressed

• D = 1 – the subheader is compressed with compression defined by the CC
flag

• this flag doesn’t have any meaning when A flag is cleared, however if
A = 0, D should be zeroed too

• this flag doesn’t have any meaning when CC flag is cleared, however if
CC = 00, D flag should be zeroed too

• E – code/data compression flag:

• E = 0 – code/data are not compressed

• E = 1 – code/data are compressed with compression defined by the CC
flag

• this flag doesn’t have any meaning when CC flag is cleared, however if
CC = 00, E flag should be zeroed too

• F – additional memory flag:

• F = 0 – no additional memory

• F = 1 – a loader will add 4 KB of memory for uninitialized data after the
end of a loaded KX image (see KX Loadtime Specification chapter)

Data Compression
The KX file format supports data compression for a subheader and code/data.

The header is never compressed. For current version there is one available
compression method – kpack (default KolibriOS compression utility and method that
is based on LZMA). Flags CC/D/E are set by a compression utility (not by a
compiler/linker, nor manually).

KX Subheader
The subheader is an optional part of a KX file. Actually the subheader is a

linear array of chunks. Chunks offer a very flexible way to organize structure of the
file. By using them programmers could choose those features of KX files which are
necessary. Each chunk has its header (chunk_type + chunk_data_size) and followed
by its data. Typical structure for a chunk with an 8-bit header is like this :

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Unique type of the chunk.
+0x01 1 byte chunk_data_size Chunk data size in bytes.
+0x02 chunk_data_size bytes chunk_data Data. Depends on chunk type.

with a 16-bit header:

Offset Size and data type Field name Description
+0x00 1 word chunk_type Unique type of the chunk.
+0x02 1 word chunk_data_size Chunk data size in bytes.
+0x04 chunk_data_size bytes chunk_data Data. Depends on chunk type.

with a 32-bit header:

Offset Size and data type Field name Description
+0x00 1 dword chunk_type Unique type of the chunk.
+0x04 1 dword chunk_data_size Chunk data size in bytes.
+0x08 chunk_data_size bytes chunk_data Data. Depends on chunk type.

For convenience, hereafter chunks with the 8-bit header will be used in the
structure descriptions.

Even if the subheader is empty (no chunks were defined), it is terminated by
special chunk -1 (type 0xFF/0xFFFF/0xFFFFFFFF). It has only chunk_type field.

Some chunks has their own dependencies (i.e. they depend on other chunks),
some shouldn’t or must not be used when other are already defined, some could be
used regardless of any other chunk. See more details in the specific chunk description.

Chunks
There is a list of available for version 0.0 chunks:

• t ype 0x00 – default entry point

• type 0x20 – general executable file attributes

• type 0x 4 0 – main thread stack size

• type 0x 6 0 – initial process memory size

• t ype 0x80 – s ingle d ynamic l ibrary i mport t able

• type 0xA0 – brief (short) de s cription

Type 0x00 – Default Entry Point
Defines the default entry point of code. The structure for a chunk with an 8-bit

header:

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Must be 0x00.
+0x01 1 byte chunk_data_size Must be 4.

+0x02 1 dword chunk_data The offset of an entry point
(from beginning of the file).

There must be just one chunk of this type in the subheader, but if it’s two of
them or more, a KX loader should use a first found chunk and load such a file in spite
of the fact that the subheader is not properly formed (but a loader can show a warning
– see KX Loadtime Specification chapter).

Type 0x20 – General Executable File Attributes
This chunk defines the essential attributes of a KX file. The structure for a

chunk with an 8-bit header:

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Must be 0x20.
+0x01 1 byte chunk_data_size Must be 12.

+0x02 12 bytes chunk_data General executable file attributes
structure. See description below.

General executable file attributes:

Offset Size and data type Field name Description

+0x00 1 word kx_gen_atrbs.xf_type

KX executable file type. For
version 0.0 only type 0 is
supported – a regular KolibriOS
32-bit application/program.

+0x02 1 word kx_gen_atrbs.ui_type Specifies which user interface

type this app/program uses. See
the description below.

+0x04 1 dword kx_gen_atrbs.xf_flags
Executable file flags (don’t
confuse with KX flags).
Reserved and must be zeroed.

+0x08 1 dword kx_gen_atrbs.min_ker_rev

This field fixes minimal SVN
revision of KolibriOS kernel
that supports this app/program
and its features. If it’s needed to
run on all kernel versions, must
be set to 0.

ui_type can have following values: 0 – undefined UI type, 1 – GUI, 2 – TUI
(Text-based User Interface) via X-SHELL interface, other values are reserved.

There must be just one chunk of this type in the subheader, but if it’s two of
them or more, a KX loader should use a first found chunk and load such a file in spite
of the fact that the subheader is not properly formed (but a loader can show a warning
– see KX Loadtime Specification chapter).

Type 0x40 – Main Thread Stack Size
Defines the main thread stack size. The structure for a chunk with an 8-bit

header:

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Must be 0x40.
+0x01 1 byte chunk_data_size Must be 4.

+0x02 1 dword chunk_data The size of stack for the main
thread of a created process.

There must be just one chunk of this type in the subheader, but if it’s two of
them or more, a KX loader should use a first found chunk and load such a file in spite
of the fact that the subheader is not properly formed (but a loader can show a warning
– see KX Loadtime Specification chapter).

Type 0x60 – Initial Process Memory Size
Defines the initial process memory size. The structure for a chunk with an 8-bit

header:

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Must be 0x60.
+0x01 1 byte chunk_data_size Must be 4.

+0x02 1 dword chunk_data The size of memory which is
allocated for a created process.

There must be just one chunk of this type in the subheader, but if it’s two of
them or more, a KX loader should use a first found chunk and load such a file in spite
of the fact that the subheader is not properly formed (but a loader can show a warning
– see KX Loadtime Specification chapter).

Type 0x80 – Single Dynamic Library Import Table
Defines an import table for one dynamic library. The structure for a chunk with

an 8-bit header:

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Must be 0x80.
+0x01 1 byte chunk_data_size Variable.

+0x02 n bytes chunk_data An import table, see the description
below.

An import table for a library has this form:

Offset Size and data type Field name Description

+0x00 1 dword lib_flags Library flags. See description
below.

+0x04 1 dword lib_filename_ptr

A pointer to utf8z_str with the
filename of a dynamic library. The
filename can be just a base name
of a file (relative to the working
directory) or an absolute filename.

... This area is used for aligning and is
filled by padding bytes.

... 1 dword symb_0_name_ptr Must be aligned on a 4 byte
boundary.
A pointer to utf8z_str with the
name of an imported symbol (e.g.
a function name or a public
variable name). It’s actually an
absolute offset of a string (from

beginning of the file).

... 1 dword symb_1_name_ptr

A pointer to utf8z_str with the
name of an imported symbol (e.g.
a function name or a public
variable name). It’s actually an
absolute offset of a string (from
beginning of the file).

...

... 1 dword symb_n_name_ptr

A pointer to utf8z_str with the
name of an imported symbol (e.g.
a function name or a public
variable name). It’s actually an
absolute offset of a string (from
beginning of the file).

... n bytes lib_symbs_raw

An array of raw utf8z_str strings
with symbol names. Any
symb_*_name_ptr must point to a
string from this area.

The 4 low bits of library flags look like CCBAb, where:

• A – library loading flag:

• A = 0 – mandatory library loading (if a library cannot be loaded, the
loading of a KX file fails)

• A = 1 – nonmandatory library loading (if a library cannot be loaded, the
loading of a KX file proceeds)

• B – library linking flag

• B = 0 – mandatory library linking (if some of imported symbols cannot
be linked, the loading of a KX file fails)

• B = 1 – nonmandatory library linking (if some of imported symbols
cannot be linked, pointers to linked procedures/data are set to -1 and the
loading of a KX file proceeds)

• CC – library loading/linking status flag:

• this flag is set by a KX loader after trying and loading/linking a dynamic
library

• CC = 00 – a library successfully loaded and linked

• CC = 01 – a library successfully loaded, but some symbols are not linked

• CC = 10 – the loading of a library failed

• CC = 11 – the linking of a library failed

Other bits of library flags are reserved and must be cleared.

The amount of chunks of such type is not limited. It’s recommended to use only
Latin alphabet letters, digits and underscores in symbol names, though using national
characters or any valid Unicode chars is not prohibited at all.

Type 0xA0 – Brief (Short) Description
Defines the brief description of an app/program (for example, "fasm 1.73.27 –

flat assembler"). The structure for a chunk with an 8-bit header:

Offset Size and data type Field name Description
+0x00 1 byte chunk_type Must be 0xA0.
+0x01 1 byte chunk_data_size Variable.
+0x02 1 dword chunk_data utf8z_str with a description.

A description string length (including the terminating zero) must be < 256
bytes. The string can contain any valid Unicode characters. Also it’s possible to use
CR and LF characters for line breaking.

There must be just one chunk of this type in the subheader, but if it’s two of
them or more, the code that is parsing a KX file should use a first found chunk in spite
of the fact that the subheader is not properly formed.

KX Loadtime Specification
Any program code that loads a KX file for execution should correspond to

loadtime specification details of this chapter.

Loadtime
Before running a KX application/program gets its own execution environment:

• initialized process heap

• stack of size defined by a type 0x40 chunk, else (if that chunk doesn’t exist) 4
KB of stack space (initialized with zero bytes)

• ESP initialized with pointer to top of this stack

• sets EIP to the value defined by a type 0x00 chunk, else (if that chunk doesn’t
exist) EIP = 0x00000004

• EAX = pointer to PRDB (Pre-Runtime Data Block)

• EBX, ECX, EDX, ESI, EDI and EBP are cleared

• CF, PF, AF, ZF, SF, DF and OF of EFLAGS are cleared, other flags are
undefined

• segment registers are undefined

• a KX image is loaded at 0x00000000 address, if it was packed with kpack,
data is uncompressed

PRDB (Pre-Runtime Data Block)
PRDB has following structure:

Offset Size and data type Field name Description
+0x000 1 dword prdb_type Must be 0 for currrent version.

+0x004 1 dword prdb_size Total size of a PRDB in bytes.
For current KX version it’s 32.

+0x008 1 dword prdb_pid PID of current process.
+0x00C 1 dword prdb_ppid Parent PID (PID of a loader).
+0x010 1 dword reserved Reserved. Must be 0.
+0x014 1 dword reserved Reserved. Must be 0.

+0x018 1 dword prdb_filename_ptr Pointer to a UTF8Z string with
a filename of KX file.

+0x01C 1 dword prdb_params_ptr Pointer to a UTF8Z string with
command line parameters.

	Introduction
	KX File Format Specification
	KX Header
	KX Flags
	Data Compression
	KX Subheader
	Chunks
	Type 0x00 – Default Entry Point
	Type 0x20 – General Executable File Attributes
	Type 0x40 – Main Thread Stack Size
	Type 0x60 – Initial Process Memory Size
	Type 0x80 – Single Dynamic Library Import Table
	Type 0xA0 – Brief (Short) Description

	KX Loadtime Specification
	Loadtime
	PRDB (Pre-Runtime Data Block)

