am Windows

Microsoft Portable Executable and
Common Object File Format
Specification

Revision 11 — June 20, 2017

Abstract

This specification describes the structure of executable (image) files and object files
under the Windows® family of operating systems. These files are referred to as
Portable Executable (PE) and Common Object File Format (COFF) files,
respectively.

Note

This document is provided to aid in the development of tools and applications for
Windows but is not guaranteed to be a complete specification in all respects.
Microsoft reserves the right to alter this document without notice.

This revision of the Microsoft Portable Executable and Common Object File Format
Specification replaces all previous revisions of this specification.

For the latest information, see:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

Microsoft Portable Executable and Common Object File Format Specification - 2

Legal Notice

Microsoft Portable Executable and Common Object File Format Specification
Microsoft Corporation
Revision 10

Note: This specification is provided to aid in the development of certain development tools for the
Microsoft Windows platform. However, Microsoft does not guarantee thatitis a complete specification in
all respects, and cannot guarantee the accuracy of any information presented after the date of
publication. Microsoft reserves the rightto alter this specificationwithout notice.

Microsoftw illgrant aroyalty-free license, under reasonable and non-discriminatory terms and conditions,
to any Microsoft patent claims (if any exist) that Microsoft deems necessary for the limited purpose of
implementing and complying w ith the required portions of this specification only in the software
development tools know n as compilers, linkers, and assemblers targeting Microsoft Window s.

Complying w ith all applicable copyright law s is the responsibility of the user. Without limiting the rights
under copyright, no part of this specification may be reproduced, stored in or introduced into a retrieval
system, modified or used in a derivative w ork, or transmitted in any formor by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft.

Microsoft may have intellectual property rights covering subject matter in this specification. Exceptas
expressly provided in any w ritten license agreement from Microsoft, the furnishing of this specification
does not give you any license to any intellectual property rights, and no other rights are granted by
implication, estoppel, or otherw ise.

© 2016 Microsoft Corporation. Allrights reserved.

This specificationis provided “AS1S.” Microsoftmakes no representations or warranties,
express,implied, or statutory, as (1) to theinformationin this specification, includingany
warranties of merchantability, fitness for aparticular purpose, non-infringement, or title; (2) that
the contents of this specification are suitable forany purpose; nor (3) that the implementation of
such contents will notinfringe any third party patents, copyrights, trademarks, or otherrights.

Microsoft will not beliable for any direct, indirect, special, incidental, or consequential damages
arising out of orrelating to any use or distribution of this specification.

Microsoft, MS-DOS, MSDN, Visual Studio, Visual C++, Win32, Window s, Windows NT, Window s Server,
and Window s Vista are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other productand company names mentioned herein may be the
trademarks of their respective owners.

The foregoing names and trademarks may not be used in any manner, including advertising or publicity
pertaining to this specification or its contents w ithout specific, written prior permission fromthe respective
OW ners.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 3

Contents
T =T o o [o =T oSSR U SO
2. 0verview
3. File Headersccoceoevvvcinnnccieen
3.1. MS-DOS Stub (Image Only)....
3.2. Signature (IMage ONIY) ..ot e et et
3.3. COFF File Header (Object and IMage).......ccccvvvueiireiiirieeee ettt
3.3.1. Machine Types
3.3.2. Characteristics
3.4. Optional Header (IMage ONIY) ... s
3.4.1. Optional Header Standard Fields (Image Only)
3.4.2. Optional Header Windows -Specific Fields (Image Only)
3.4.3. Optional Header Data Directories (Image ONly)ccccccovreennneinneenneecnenns
4. Section Table (Section HEAAEIS) ...t
4.1, SECHON FIAGS ..ttt ettt bbb e
4.2. Grouped Sections (OhJECL ONIY)ccciiciiiieicieeee e
5. Other Contents Of the Fle ..o
5.1, SECHON DALAcieereiieiereieriree ettt n e
5.2. COFF Relocations (ODJECt ONIY)......cciiiiirieeiereeesie e s
5.2.1. Type Indicatorsccccoveecrriennes
5.3. COFF Line Numbers (Deprecated)......
5.4. COFF SYMDOI TaBI.....oceiice e
5.4.1. Symbol Name Representation..........ccooo e
5.4.2. Section Number Values
5.4.3. TYPE REPIESENTALION ...ttt
5.4.4. SIOrAgE CIASSoiieereuiiiieiierisie ettt sttt n et
5.5. Auxiliary Symbol Records
5.5.1. Auxiliary Format 1: Function Definitions
5.5.2. Auxiliary Format 2: .bf and .ef SYMbOIS.......ccccoveiiiiciccceeee e
5.5.3. Auxiliary Format 3: Weak Externals..........
5.5.4. Auxiliary Format 4: Files........ccooeeiennnnen.
5.5.5. Auxiliary Format 5: Section Definitions......
5.5.6. COMDAT Sections (Object Only)
5.5.7. CLR Token Definition (Object Only)...
5.6. COFF SHrNQG TaDIE......oeieee et st e s
5.7. The Attribute Certificate Table (IMage ONlY) ... e
5.7.1. Certificate Data
5.8. Delay-Load Import Tables (IMage ONlY)cccccvveiiiiieeineiesceeesee e
5.8.1. The Delay-Load DireCtory TADI ...
Lo B2 N 1] o 11 (=TSSP
5.8.3 NAIME ... e
5.8.4. Module Handle..........c.ccceurvruee.
5.8.5. Delay IMport Address Table ..o
5.8.6. Delay IMport Name Table........ccciiiiniciccee s
5.8.7. Delay Bound Import Address Table and Time Stamp.........ccccoveerenreienieiencnenas
5.8.8. Delay Unload Import Address Table........ccocciveiieieciseceeseeee e
6. Special Sections
6.1. The .dEDUQG SECHON. ...ttt et ee e
6.1.1. Debug Directory (IMage ONlY) ... e
6.1.2. Debug Type
6.1.3. .dEDUGBF (ODJECT ONIY) ..ot
6.1.4. .deDUQGPS (ODJECE ONIY) ...uiuiiiiiiiiiiiieieieieieiee ettt
6.1.5. .debug$P (Object Only)......
6.1.6. .debug$T (Object Only)ccoeeererercrernieieeieieieiennas
6.1.7. Linker Support for Microsoft Debug Information
6.2. The .drectve Section (Object Only)ccccvveirrnreenennnn
6.3. The .edata Section (Image Only)
6.3.1. Export Directory Table...............
6.3.2. Export Address Table.............
6.3.3. Export Name Pointer Table....
6.3.4. EXpOrt Ordinal TabIe ..o
6.3.5. EXPOrt NamME TabI ..o s

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common ObjectFile Format Specification - 4

6.4. The .idata Section............c........
6.4.1. Import Directory Table
6.4.2. Import Lookup Table........

6.4.3. HINNAME TaDIE......c.oiiieee e e
6.4.4. IMPOrt AdAreSs Tablec.coiiiiceeee e e

6.5. The .pdata Section

6.6. The .reloc Section (IMage ONIY)......cooeirreeirreeeee e e
6.6.1. Base Relocation BIOCK..........coi it
6.6.2. Base Relocation Types ...

6.7. The .tls Section
6.7.1. THE TLS DIlECIONY ...eeiveiiireeieieisieeeet sttt
6.7.2. TLS Callback FUNCtionsc.ccccecereierennennncns

6.8. The Load Configuration Structure (Image Only)
6.8.1. Load Configuration Directory........c.ccccevevvevrrenns
6.8.2. Load Configuration Layout........

6.9. The .rsrc Section........ccccceveeeecnencne
6.9.1. Resource Directory Table......
6.9.2. Resource Directory Entries....
6.9.3. Resource Directory String.......
6.9.4. RESOUICE DAt ENIIYcvoieiiiieiieeeeeeetet ettt e

6.10. The .cormeta Section (OBJECt ONIY) ...covciieiiieeereeee e

6.11. The .sxdata Section..........ccccccveeeruennnes

7. Archive (Library) File Format...

7.1. Archive File Signature..........

7.2. Archive Member Headers....

7.3. First Linker Member..............

7.4. Second Linker Member....

7.5. Longnames Member..........

8. Import Library Format........

8. L. IMPOIT HEAUEN ...ttt n e

L T [4] o T] (A Y, o 1RSSR

8.3. IMpPOrt Name TYPE ...t

Appendix A: Calculating Authenticode PE Image Hash
Al Whatis an Authenticode PE Image Hash? ... 70
A.2 Whatis Covered in an Authenticode PE Image Hash?....

g (=T 0= T =S OSSR TORSSN

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common ObjectFile Format Specification-5

1. General Concepts

This document specifies the structure of executable (image) files and object files
under the Microsoft® Windows® family of operating systems. These files are
referred to as Portable Executable (PE) and Common Object File Format (COFF)
files, respectively. The name “Portable Executable” refers to the fact that the format
is not architecture specific.

Certain concepts that appear throughout this specification are described in the

following table:

Name

Description

attribute certificate

A certificate that is used to associate verifiable statements with an
image. A number of different verifiable statements can be associated
with a file; one of the mostuseful ones is a statement by a software
manufacturer thatindicates whatthe message digestofthe imageis
expected to be. A message digestis similarto a checksum except
that it is extremely difficult to forge. Therefore, itis very difficult to
modify a file to have the same message digestas the originalfile.
The statementcan be verified as being made by the manufacturer by
using public or private key cryptography schemes. This document
describes details aboutattribute certificates other than to allow for
their insertioninto image files.

date/time stamp

A stamp that is used for different purposes in several places ina PE
or COFF file. In mostcases, the formatof each stampis the same as
that used by the time functions in the C run-time library. For
exceptions, see the descripton ofIMAGE_DEBUG_TYPE_REPRO
(section 6.1.2). If the stamp value is 0 or OXFFFFFFFF, it does not
representareal or meaningful date/time stamp.

file pointer

The location of an item within the file itself, before being processed
by the linker (in the case of objectfiles) or the loader (in the case of
image files). In other words, this is a position within the file as stored
on disk.

linker

A reference to the linkerthat is provided with Microsoft Visual
Studio®.

objectfile

Afile thatis given as input to the linker. The linker produces an
image file,which in turn is used as inputby the loader. The term
“objectfile” does notnecessarilyimplyany connection to object-
oriented programming.

reserved, mustbe 0

A description of a field that indicates thatthe value of the field must
be zero for generators and consumers mustignore the field.

RVA

Relative virtual address. Inanimage file, the address of an item after
itis loaded into memory, with the base address ofthe image file
subtracted from it. The RVA of an item almostalways differs from its
position within the file on disk (file pointer).

In an objectfile, an RVA is less meaningful because memory
locations are notassigned. In this case,an RVA would be an
address within a section (described later in this table), to which a
relocationis later applied during linking. For simplicity, a compiler
should justsetthe first RVA in each section to zero.

section

The basic unitof code or data within a PE or COFF file. For example,
all code in an objectfile can be combined within a single section or
(depending on compiler behavior) each function can occupy its own
section. With more sections, there is more file overhead, but the
linkeris able to link in code more selectively. A sectionis similarto a
segmentin Intel 8086 architecture. All the raw data ina section must
be loaded contiguously. In addition, an image file can contain a
number ofsections, such as .tls or .reloc, which have special
purposes.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 6

Name Description

VA virtual address. Same as RVA, except that the base address ofthe
image file is not subtracted. The address is called a “VA” because
Windows creates a distinct VA space for each process, independent
of physical memory. For almostall purposes, a VA should be
considered justan address. A VA is not as predictable as an RVA
because the loader mightnotload the image at its preferred location.

2. Overview
Figure 1 illustrates the Microsoft PE executable format.

MS-DOS 2.0 Compatible Base of Image Header
EXE Header

unused

OEM Identifier
OEM Information
MS-DOS 2.0 Section
Offset to (for MS-DOS compatibility only)
PE Header

MS-DOS 2.0 Stub Program
and
Relocation Table

unused

PE Header
(aligned on 8-byte
boundary)

Section Headers

Image Pages:
import info
export info

base relocations
resource info

Figure 1. Typical Portable EXE File Layout

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 7

Figure 2 illustrates the Microsoft COFF object-module format:

Microsoft COFF Header

Section Headers

Raw Data:
code
data

debug info

relocations

Figure 2. Typical COFF Object Module Layout

3. File Headers

The PE file header consists of a Microsoft MS-DOS® stub, the PE signature, the
COFF file header, and an optional header. A COFF object file header consists of a
COFF file header and an optional header. In both cases, the file headers are
followed immediately by section headers.

3.1. MS-DOS Stub (Image Only)

The MS-DOS stub is a valid application that runs under MS-DOS. It is placed at the
front of the EXE image. The linker places a default stub here, which prints out the
message “This program cannot be run in DOS mode” when the image is run in
MS-DOS. The user can specify a different stub by using the /STUB linker option.

At location 0x3c, the stub has the file offset to the PE signature. This information

enables Windows to properly execute the image file, even though it has an
MS-DOS stub. This file offset is placed at location 0x3c during linking.

3.2. Signature (Image Only)

After the MS-DOS stub, at the file offset specified at offset 0x3c, is a 4-byte
signature that identifies the file as a PE format image file. This signature is “PE\O\0”
(the letters “P” and “E” followed by two null bytes).

3.3. COFF File Header (Object and Image)

At the beginning of an object file, or immediately after the signature of an image file,
is a standard COFF file header in the following format. Note that the Windows
loader limits the number of sections to 96.

Offset Size Feld Description

0 2 Machine The numberthatidentifies the type of target
machine. Formore information, see section 3.3.1,
“Machine Types.”

2 2 NumberOfSections The number ofsections. This indicates the size of
the section table, whichimmediatelyfollows the
headers.

4 4 TimeDateStamp The low 32 bits of the number of seconds since

00:00 January 1, 1970 (a C run-timetime_t
value), that indicates when the file was created.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 8

Offset Size Feld

Description

8 4 PointerToSymbolTable

The file offsetof the COFF symbol table, or zero
if no COFF symbol table is present. This value
should be zero for an image because COFF
debugginginformation is deprecated.

12 4 NumberOfSymbols

The number ofentries inthe symbol table. This
data can be used to locate the string table, which
immediatelyfollows the symbol table. This value
should be zero for an image because COFF
debugginginformation is deprecated.

16 2 SizeOfOptionalHeader

The size of the optional header, whichis required
for executable files butnot for objectfiles. This
value should be zero for an objectfile. For a
description ofthe headerformat, see section 3.4,
“Optional Header (Image Only).”

18 2 Characteristics

The flags that indicate the attributes of the file.
For specificflag values, see section 3.3.2,
“Characteristics.”

3.3.1. Machine Types

The Machine field has one of the following values that specifies its CPU type. An
image file can be run only on the specified machine or on a system that emulates

the specified machine.

Constant Value Description
IMAGE_FILE_ MACHINE_UNKNOWN 0x0 The contents of this field are assumed
to be applicable to any machine type
IMAGE_FILE_MACHINE_AM33 0x1d3 | Matsushita AM33
IMAGE_FILE_MACHINE_AMD64 0x8664 | x64
IMAGE_FILE_MACHINE_ARM 0x1cO0 ARM little endian
IMAGE_FILE_MACHINE_ARM64 Oxaa64 | ARM64 little endian
IMAGE_FILE_MACHINE_ARMNT Oxlc4 ARM Thumb-2 little endian
IMAGE_FILE_MACHINE_EBC Oxebc | EFI byte code
IMAGE_FILE_MACHINE_1386 Oxl4c Intel 386 or later processorsand
compatible processors
IMAGE_FILE_MACHINE_lA64 0x200 Intel Itanium processor family
IMAGE_FILE_MACHINE_M32R 0x9041 | Mitsubishi M32R little endian
IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16
IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU
IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS16 with FPU
IMAGE_FILE_MACHINE_POWERPC 0ox1fo Power PC little endian
IMAGE_FILE_MACHINE_POWERPCFP | Ox1f1 Power PC with floating pointsupport
IMAGE_FILE_MACHINE_R4000 0x166 | MIPS little endian
IMAGE_FILE_MACHINE_RISCV32 0x5032 | RISC-V 32-bitaddress space
IMAGE_FILE_MACHINE_RISCV64 0x5064 | RISC-V 64-bitaddress space
IMAGE_FILE_MACHINE_RISCV128 0x5128 | RISC-V 128-bitaddress space
IMAGE_FILE_MACHINE_SH3 Ox1la2 Hitachi SH3
IMAGE_FILE_MACHINE_SH3DSP 0xla3 | Hitachi SH3 DSP
IMAGE_FILE_MACHINE_SH4 0xla6 | HitachiSH4
IMAGE_FILE_MACHINE_SH5 0xla8 | HitachiSH5
IMAGE_FILE_MACHINE_THUMB 0Ox1c2 Thumb
IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS little-endian WCE V2

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification -9

3.3.2. Characteristics

The Characteristics field contains flags that indicate attributes of the object or image
file. The following flags are currently defined:

Hag

Value

Description

IMAGE_FILE_RELOCS_STRIPPED

0x0001

Image only, Windows CE, and
Microsoft Windows NT® and later.
This indicates thatthe file does not
contain base relocations and must
therefore be loaded at its preferred
base address. If the base addressis
not available, the loaderreports an
error. The defaultbehavior of the
linker is to strip base relocations from
executable (EXE) files.

IMAGE_FILE_EXECUTABLE_IMAGE

0x0002

Image only. This indicates thatthe
image file is valid and can be run. If
this flag is not set, it indicates a linker
error.

IMAGE_FILE_LINE_NUMS_STRIPPED

0x0004

COFF line numbers have been
removed. This flag is deprecated and
should be zero.

IMAGE_FILE_LOCAL_SYMS_STRIPPED

0x0008

COFF symbol table entries forlocal
symbols have beenremoved. This
flag is deprecated and should be
zero.

IMAGE_FILE_AGGRESSIVE_WS_TRIM

0x0010

Obsolete. Aggressivelytrim working
set. This flag is deprecated for
Windows 2000 and later and mustbe
zero.

IMAGE_FILE_LARGE_ADDRESS_
AWARE

0x0020

Application can handle >2-GB
addresses.

0x0040

This flag is reserved for future use.

IMAGE_FILE_BYTES_REVERSED_LO

0x0080

Little endian: the leastsignificantbit
(LSB) precedes the mostsignificant
bit (MSB) in memory. This flag is
deprecated and should be zero.

IMAGE_FILE_32BIT_MACHINE

0x0100

Machine is based on a 32-bit-word
architecture.

IMAGE_FILE_DEBUG_STRIPPED

0x0200

Debugging information is removed
from the imagefile.

IMAGE_FILE_REMOVABLE_RUN_
FROM_SWAP

0x0400

If the image is onremovable media,
fully load it and copy it to the swap
file.

IMAGE_FILE_NET_RUN_FROM_SWAP

0x0800

If the image is on network media, fully
load it and copyit to the swap file.

IMAGE_FILE_SYSTEM

0x1000

The imagefileis a system file,not a
userprogram.

IMAGE_FILE_DLL

0x2000

The image file is a dynamic-link
library (DLL). Suchfiles are
considered executable files for almost
all purposes, although theycannotbe
directly run.

IMAGE_FILE_UP_SYSTEM ONLY

0x4000

The file should be runonlyon a
uniprocessor machine.

IMAGE_FILE_BYTES_REVERSED_HI

0x8000

Big endian:the MSB precedes the
LSB in memory. This flag is
deprecated and should be zero.

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 10

3.4. Optional Header (Image Only)

Every image file has an optional header that provides information to the loader. This
header is optional in the sense that some files (specifically, object files) do not have
it. For image files, this header is required. An object file can have an optional
header, but generally this header has no function in an object file except to increase
its size.

Note that the size of the optional header is not fixed. The SizeOfOptionalHeader
field in the COFF header must be used to validate that a probe into the file for a
particular data directory does not go beyond SizeOfOptionalHeader. For more
information, see section 3.3, “COFF File Header (Object and Image).”

The NumberOfRvaAndSizes field of the optional header should also be used to
ensure that no probe for a particular data directory entry goes beyond the optional
header. In addition, itis important to validate the optional header magic number for
format compatibility.

The optional header magic number determines whether an image is a PE32 or
PE32+ executable.

Magic number PE format
0x10b PE32
0x20b PE32+

PE32+ images allow for a 64-bit address space while limiting the image size to
2 gigabytes. Other PE32+ moadifications are addressed in their respective sections.

The optional header itself has three major parts.

Offset Size Header part Description
(PE32/PE32+) (PE32/PE32+)

0 28/24 Standard fields Fields that are defined for all
implementations of COFF, including
UNIX.

28/24 68/88 Windows- Additional fields to supportspecific
specificfields features of Windows (forexample,
subsystems).

96/112 Variable Data directories | Address/size pairs for special tables
that are found in the image file and are
used by the operating system (for
example, the importtable and the
export table).

3.4.1.0ptional Header Standard Fields (Image Only)

The first eight fields of the optional header are standard fields that are defined for
ewvery implementation of COFF. These fields contain general information that is
useful for loading and running an executable file. They are unchanged for the
PE32+ format.

Offset Size Held Description

0 2 Magic The unsigned integer thatidentifies the
state of the image file. The mostcommon
numberis 0x10B, which identifies itas a
normal executable file.0x107 identifies itas
a ROM image, and 0x20B identifies itas a
PE32+ executable.

2 1 MajorLinkerVersion The linker major version number.

3 1 MinorLinkerVersion The linker minor version number.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 11

Offset Size Held Description
4 4 SizeOfCode The size of the code (text) section, or the
sum ofall code sections ifthere are multiple
sections.
8 4 SizeOfinitializedData The size of the initialized data section, or

the sum ofall such sections ifthere are
multiple data sections.

12 4

SizeOfUninitializedData

The size of the uninitialized data section
(BSS), or the sum ofall such sections if
there are multiple BSS sections.

16 4 AddressOfEntryPoint

The address ofthe entry point relative to the
image base when the executable file is
loaded into memory. For program images,
this is the starting address. Fordevice
drivers, this is the address ofthe
initialization function. An entry pointis
optional for DLLs. When no entry pointis
present, this field mustbe zero.

20 4 BaseOfCode

The address thatis relative to the image
base of the beginning-of-code section when
itis loaded into memory.

PE32 contains this additional field, which is absent in PE32+, following

BaseOfCode.
Offset Size Held Description
24 4 BaseOfData The address thatis relative to the image

base of the beginning-of-data section when
itis loaded into memory.

3.4.2. Optional Header Windows-Specific Fields (Image Only)

The next 21 fields are an extension to the COFF optional header format. They
contain additional information that is required by the linker and loader in Windows.

Offset Size Feld
(PE32/ (PE32/
PE32+) PE32+)

Description

28/24 4/8 ImageBase

The preferred address of the first
byte of image when loaded into
memory, mustbe a multiple of 64 K.
The defaultfor DLLs is 0x10000000.
The defaultfor Windows CE EXEs is
0x00010000. The defaultfor
Windows NT, Windows 2000,
Windows XP, Windows 95,
Windows 98, and Windows Me is
0x00400000.

32/32 4 SectionAlignment

The alignment(in bytes) of sections
whenthey are loaded into memory. It
mustbe greater than or equal to
FileAlignment. The defaultis the
page size for the architecture.

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 12

Offset
(PE32/
PE32+)

Size

Field

(PE32/
PE32+)

Description

36/36

4

FileAlignment

The alignmentfactor (in bytes) that is
usedto alignthe raw data of sections
in the image file. The value should be
a power of 2 between 512 and 64 K,
inclusive. The defaultis 512. If the
SectionAlignmentis lessthan the
architecture’s page size, then
FileAlignmentmustmatch
SectionAlignment.

40/40

MajorOperatingSystemVersion

The major version number ofthe
required operating system.

42/42

MinorOperatingSystemVersion

The minorversion numberofthe
required operating system.

44/44

MajorimageVersion

The majorversion number ofthe
image.

46/46

MinorimageVersion

The minorversion number ofthe
image.

48/48

MajorSubsystemVersion

The major version number ofthe
subsystem.

50/50

MinorSubsystemVersion

The minorversion number ofthe
subsystem.

52/52

Win32VersionValue

Reserved, mustbe zero.

56/56

SizeOflmage

The size (in bytes) of the image,
including all headers, as theimage is
loaded in memory. It mustbe a
multiple of SectionAlignment.

60/60

SizeOfHeaders

The combined size ofan MS-DOS
stub, PE header, and section
headers rounded up to a multiple of
FileAlignment.

64/64

CheckSum

The image file checksum. The
algorithm for computing the
checksum is incorporated into
IMAGHELP.DLL. The following are
checked for validation at load time:
alldrivers, any DLL loaded at boot
time,and any DLL that is loaded into
a critical Windows process.

68/68

Subsystem

The subsystem thatis required to run
this image. For more information, see
“Windows Subsystem” laterin this
specification.

70/70

DIICharacteristics

For more information, see “DLL
Characteristics” laterin this
specification.

72[72

4/8

SizeOfStackReserve

The size of the stackto reserve.Only
SizeOfStackCommitis committed;
the restis made available one page
ata time until the reserve size is
reached.

76/80

4/8

SizeOfStackCommit

The size of the stackto commit.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common ObjectFile Format Specification - 13

Offset Size Feld
(PE32/ (PE32/
PE32+) PE32+)

Description

80/88 4/8 SizeOfHeapReserve

The size of the local heap spaceto
reserve. Only SizeOfHeapCommitis
committed; the restis made available
one page at a time until the reserve
size is reached.

84/96 4/8 SizeOfHeapCommit

The size of the local heap space to
commit.

88/104 | 4 LoaderFlags

Reserved, mustbe zero.

92/108 | 4 NumberOfRvaAndSizes

The number of data-directory entries
in the remainder ofthe optional
header.Each describesalocation
andsize.

Windows Subsystem

The following values defined for the Subsystem field of the optional header
determine which Windows subsystem (if any) is required to run the image.

Constant Value Description
IMAGE_SUBSYSTEM_UNKNOWN 0 An unknown
subsystem
IMAGE_SUBSYSTEM_NATIVE 1 Device drivers and
native Windows
processes
IMAGE_SUBSYSTEM_WINDOWS_GUI 2 The Windows
graphical user
interface (GUI)
subsystem
IMAGE_SUBSYSTEM_WINDOWS_CUI 3 The Windows
character subsystem
IMAGE_SUBSYSTEM_0OS2_CUI 5 The OS/2 character
subsystem
IMAGE_SUBSYSTEM _POSIX CUI 7 The Posix character
subsystem
IMAGE_SUBSYSTEM_NATIVE_WINDOWS 8 Native Win9x driver
IMAGE_SUBSYSTEM_WINDOWS_CE_GUI 9 Windows CE
IMAGE_SUBSYSTEM_EFI_APPLICATION 10 An Extensible
Firmware Interface
(EFI) application
IMAGE_SUBSYSTEM_EFI_BOOT_ SERVICE_DRIVER 11 An EFI driver with
boot services
IMAGE_SUBSYSTEM_EFI_RUNTIME_ DRIVER 12 An EFI driver with run-
time services
IMAGE_SUBSYSTEM_EFI_ROM 13 An EFI ROM image
IMAGE_SUBSYSTEM_XBOX 14 XBOX
IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION | 16 Windows boot
application.

DLL Characteristics

The following values are defined for the DlICharacteristics field of the optional

header.
Constant Value Description
0x0001 Reserved, mustbe
zero.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 14

Constant Value Description
0x0002 Reserved, mustbe
zero.
0x0004 Reserved, mustbe
zero.
0x0008 Reserved, mustbe
zero.
IMAGE_DLLCHARACTERISTICS_HIGH_EN 0x0020 Image can handlea
TROPY_VA high entropy 64-hit
virtual address space.
IMAGE_DLLCHARACTERISTICS_ 0x0040 DLL can be relocated at
DYNAMIC_BASE loadtime.
IMAGE_DLLCHARACTERISTICS_ 0x0080 Code Integrity checks
FORCE_INTEGRITY are enforced.
IMAGE_DLLCHARACTERISTICS_ 0x0100 Imageis NX
NX_COMPAT compatible.
IMAGE_DLLCHARACTERISTICS_ 0x0200 Isolation aware, butdo
NO_ISOLATION notisolate theimage.
IMAGE_DLLCHARACTERISTICS_ NO_SEH | 0x0400 Does notuse structured

exception (SE)
handling.No SE
handlermaybe called

in this image.
IMAGE_DLLCHARACTERISTICS_ NO_BIND | 0x0800 Do not bind the image.
IMAGE_DLLCHARACTERISTICS_APPCON 0x1000 Image mustexecute in
TAINER an AppContainer.
IMAGE_DLLCHARACTERISTICS_ 0x2000 A WDM driver.
WDM_DRIVER
IMAGE_DLLCHARACTERISTICS_GUARD_ 0x4000 Image supports Control
CF Flow Guard.
IMAGE_DLLCHARACTERISTICS_ 0x8000 Terminal Server aware.

TERMINAL_SERVER_AWARE

3.4.3. Optional Header Data Directories (Image Only)

Each data directory gives the address and size of a table or string that Windows
uses. These data directory entries are all loaded into memory so that the system
can use them at run time. A data directory is an 8-byte field that has the following
declaration:

typedef struct IMAGE DATA DIRECTORY ({
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, VirtualAddress, is actually the RVA of the table. The RVA is the
address of the table relative tothe base address of the image when the table is

loaded. The second field gives the size in bytes. The data directories, which form
the last part of the optional header, are listed in the following table.

Note that the number of directories is not fixed. Before looking for a specific
directory, check the NumberOfRvaAndSizes field in the optional header.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 15

Also, do not assume that the RVAs in this table point to the beginning of a section
or that the sections that contain specific tables have specific names.

Offset Size Held Description
(PE/PE32+)
96/112 8 Export Table The export table address and size. For more
information see section 6.3, “The .edata Section
(Image Only).”
104/120 8 ImportTable The importtable address and size. For more
information, see section 6.4, “The .idata
Section.”
112/128 8 Resource Table The resource table address and size. For more
information, see section 6.9, “The .rsrc Section.”
120/136 8 Exception Table The exception table address and size. For more
information, see section 6.5, “The .pdata
Section.”
128/144 8 Certificate Table The attribute certificate table address and size.
For more information, see section 5.7,“The
Attribute Certificate Table (Image Only).”
136/152 8 Base Relocation The baserelocation table address and size. For
Table more information, see section 6.6, "The .reloc
Section (Image Only)."
144/160 8 Debug The debug data starting address and size. For
more information, see section 6.1, “The .debug
Section.”
152/168 8 Architecture Reserved, mustbe 0
160/176 8 Global Ptr The RVA of the value to be stored in the global
pointerregister. The size member of this
structure mustbe setto zero.
168/184 8 TLS Table The thread local storage (TLS) table address
and size. For more information, see section 6.7,
“The .tls Section.”
176/192 8 Load Config Table | The load configuration table address and size.
For more information, see section 6.8, “The Load
Configuration Structure (Image Only).”
184/200 8 Bound Import The bound importtable address and size.
192/208 8 IAT The importaddress table address and size. For
more information, see section 6.4.4, “Import
Address Table.”
200/216 8 Delay Import The delay importdescriptor addressand size.
Descriptor For more information, see section 5.8, “Delay-
Load Import Tables (Image Only).”
208/224 8 CLR Runtime The CLR runtime headeraddress and size. For
Header more information, see section 6.10, “The
.cormeta Section (Object Only).”
216/232 8 Reserved, mustbe zero

The Certificate Table entry points to a table of attribute certificates. These
certificates are not loaded into memory as part of the image. As such, the first field
of this entry, which is normally an RVA, is a file pointer instead.

4. Section Table (Section Headers)

Each row of the section table is, in effect, a section header. This table immediately
follows the optional header, if any. This positioning is required because the file
header does not contain a direct pointer to the section table. Instead, the location of
the section table is determined by calculating the location of the first byte after the

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 16

headers. Make sure to use the size of the optional header as specified in the file
header.

The number of entries in the section table is given by the NumberOfSections field in

the file header. Entries in the section table are numbered starting from one (1). The
code and data memory section entries are in the order chosen by the linker.

In an image file, the VAs for sections must be assigned by the linker so that they
are in ascending order and adjacent, and they must be a multiple of the
SectionAlignment value in the optional header.

Each section header (section table entry) has the following format, for a total of 40
bytes per entry.

Offset Size Feld Description

0 8 Name An 8-byte, null-padded UTF-8 encoded string. If
the string is exactly 8 characters long, there is no
terminating null. Forlonger names, this field
contains aslash (/) that is followed by an ASCII
representation ofa decimal number thatis an
offsetinto the string table. Executable images do
not use a string table and do not supportsection
names longerthan 8 characters.Long names in
objectfiles are truncated if they are emitted to an
executablefile.

8 4 VirtualSize The total size of the section whenloaded into
memory. If this value is greater than
SizeOfRawData, the sectionis zero-padded. This
field is valid only for executable images and
should be setto zero for object files.

12 4 VirtualAddress For executable images, the address ofthe first
byte of the section relative to the image base
when the sectionis loaded into memory. For
objectfiles, this field is the address ofthe first
byte before relocationis applied;for simplicity,
compilers should setthis to zero. Otherwise, itis
an arbitrary value that is subtracted from offsets
during relocation.

16 4 SizeOfRawData The size of the section (for objectfiles) or the
size of the initialized data on disk (for image
files). For executable images, this mustbe a
multiple of FileAlignmentfrom the optional
header. If this is less than VirtualSize, the
remainder ofthe section is zero-filled. Because
the SizeOfRawData field is rounded but the
VirtualSize field is not, it is possible for
SizeOfRawData to be greaterthan VirtualSize as
well. When a section contains onlyuninitialized
data, this field should be zero.

20 4 PointerToRawData The file pointerto the first page of the section
within the COFF file. For executable images, this
mustbe a multiple of FileAlignmentfrom the
optional header. For objectfiles, the value should
be aligned on a 4-byte boundary for best
performance. When a section contains only
uninitialized data, this field should be zero.

24 4 PointerToRelocations The file pointerto the beginning ofrelocation
entries for the section. This is setto zero for
executable images orif there are no relocations.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 17

Offset Size Feld

Description

28 4 PointerToLinenumbers

The file pointerto the beginning ofline-number
entries for the section. This is setto zero if there
are no COFF line numbers. This value should be
zero for an image because COFF debugging
information is deprecated.

32 2 NumberOfRelocations

The number ofrelocation entries for the section.
This is setto zero for executable images.

34 2 NumberOfLinenumbers

The number ofline-number entries for the
section. This value should be zero for an image
because COFF debugging informationis
deprecated.

36 4 Characteristics

The flags that describe the characteristics ofthe

section. For more information, see section 4.1,
“Section Flags.”

4.1. Section Flags

The section flags in the Characteristics

characteristics of the section.

field of the section header indicate

Hag Value Description
0x00000000 | Reserved for future use.
0x00000001 | Reserved for future use.
0x00000002 | Reserved for future use.
0x00000004 | Reserved for future use.
IMAGE_SCN_TYPE_NO_PAD 0x00000008 | The sectionshould notbe padded
to the next boundary. This flag is
obsolete and is replaced by
IMAGE_SCN_ALIGN_1BYTES.
This is valid only for objectfiles.
0x00000010 | Reserved for future use.
IMAGE_SCN_CNT_CODE 0x00000020 | The section contains executable
code.
IMAGE_SCN_CNT_INITIALIZED_DATA | 0x00000040 | The section contains initialized
data.
IMAGE_SCN_CNT_UNINITIALIZED _ 0x00000080 | The section contains uninitialized
DATA data.
IMAGE_SCN_LNK_OTHER 0x00000100 | Reserved for future use.
IMAGE_SCN_LNK_INFO 0x00000200 | The section contains comments or
other information. The .drectve
section has this type. This is valid
for object files only.
0x00000400 | Reserved for future use.
IMAGE_SCN_LNK_REMOVE 0x00000800 | The sectionwillnotbecome part
of the image. This is valid only for
objectfiles.
IMAGE_SCN_LNK_COMDAT 0x00001000 | The section contains COMDAT
data. For more information, see
section 5.5.6, “COMDAT Sections
(Object Only).” This is valid only
for object files.
IMAGE_SCN_GPREL 0x00008000 | The section contains data
referenced through the global
pointer (GP).
IMAGE_SCN_MEM_PURGEABLE 0x00020000 | Reserved for future use.
IMAGE_SCN_MEM_16BIT 0x00020000 | Reserved for future use.

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common ObjectFile Format Specification - 18

Hag Value Description
IMAGE_SCN_MEM_LOCKED 0x00040000 | Reserved for future use.
IMAGE_SCN_MEM_PRELOAD 0x00080000 | Reserved for future use.
IMAGE_SCN_ALIGN_1BYTES 0x00100000 | Align data ona 1-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_2BYTES 0x00200000 | Align data ona 2-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_4BYTES 0x00300000 | Align data on a 4-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_8BYTES 0x00400000 | Align data onan 8-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_16BYTES 0x00500000 | Align data ona 16-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_32BYTES 0x00600000 | Align data on a 32-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_64BYTES 0x00700000 | Align data on a 64-byte boundary.
Valid only for objectfiles.
IMAGE_SCN_ALIGN_128BYTES 0x00800000 | Align data ona 128-byte
boundary. Valid only for object
files.
IMAGE_SCN_ALIGN_256BYTES 0x00900000 | Align data on a 256-byte
boundary. Valid only for object
files.
IMAGE_SCN_ALIGN_512BYTES 0x00A00000 | Align data ona 512-byte
boundary. Valid only for object
files.
IMAGE_SCN_ALIGN_1024BYTES 0x00B00000 | Align data ona 1024-byte
boundary. Valid only for object
files.
IMAGE_SCN_ALIGN_2048BYTES 0x00C00000 | Align data ona 2048-byte
boundary. Valid only for object
files.
IMAGE_SCN_ALIGN_4096BYTES 0x00D00000 | Align data on a 4096-byte
boundary. Valid only for object
files.
IMAGE_SCN_ALIGN_8192BYTES 0xO0E00000 | Align data onan 8192-byte
boundary. Valid only for object
files.
IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 | The section contains extended
relocations.
IMAGE_SCN_MEM_DISCARDABLE 0x02000000 | The section can be discarded as
needed.
IMAGE_SCN_MEM_NOT_CACHED 0x04000000 | The section cannotbe cached.
IMAGE_SCN_MEM_NOT_PAGED 0x08000000 | The sectionis notpageable.
IMAGE_SCN_MEM_SHARED 0x10000000 | The sectioncanbe sharedin
memory.
IMAGE_SCN_MEM_EXECUTE 0x20000000 | The section can be executed as
code.
IMAGE_SCN_MEM_READ 0x40000000 | The section can be read.
IMAGE_SCN_MEM_WRITE 0x80000000 | The section can be written to.

IMAGE_SCN_LNK_NRELOC_OVFL indicates that the count of relocations for the
section exceeds the 16 bits that are resened for it in the section header. If the bit is
set and the NumberOfRelocations field in the section header is 0xffff, the actual
relocation count is stored in the 32-bit VirtualAddress field of the first relocation. It is
an error if IMAGE_SCN_LNK_NRELOC_OVFL is set and there are fewer than Oxffff

relocations in the section.

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 19

4.2. Grouped Sections (Object Only)

The “$” character (dollar sign) has a special interpretation in section names in
object files.

When determining the image section that will contain the contents of an object
section, the linker discards the “$” and all characters that follow it. Thus, an object
section named .text$X actually contributes to the .text section in the image.

However, the characters following the “$” determine the ordering of the
contributions to the image section. All contributions with the same object-section
name are allocated contiguously in the image, and the blocks of contributions are
sorted in lexical order by object-section name. Therefore, everything in object files
with section name .text$X ends up together, after the .text$W contributions and
before the .text$Y contributions.

The section name in an image file never contains a “$” character.

5. Other Contents of the File

The data structures that were described so far, up to and including the optional
header, are all located at a fixed offset from the beginning of the file (or from the PE
header if the file is an image that contains an MS-DOS stub).

The remainder of a COFF object or image file contains blocks of data that are not
necessarily at any specific file offset. Instead, the locations are defined by pointers
in the optional header or a section header.

An exception is for images with a SectionAlignment value of less than the page size
of the architecture (4 K for Intel x86 and for MIPS, and 8 K for Itanium). For a
description of SectionAlignment, see section 3.4, "Optional Header (Image Only)."
In this case, there are constraints on the file offset of the section data, as described
in section 5.1, "Section Data." Another exception is that attribute certificate and
debug information must be placed at the very end of an image file, with the attribute
certificate table immediately preceding the debug section, because the loader does
not map these into memory. The rule about attribute certificate and debug
information does not apply to object files, however.

5.1. Section Data

Initialized data for a section consists of simple blocks of bytes. However, for
sections that contain all zeros, the section data need not be included.

The data for each section is located at the file offset that was given by the
PointerToRawData field in the section header. The size of this data in the file is

indicated by the SizeOfRawData field. If SizeOfRawData is less than VirtualSize,
the remainder is padded with zeros.

In an image file, the section data must be aligned on a boundary as specified by the
FileAlignment field in the optional header. Section data must appear in order of the

RVA values for the corresponding sections (as do the individual section headers in
the section table).

There are additional restrictions on image files if the SectionAlignment value in the
optional header is less than the page size of the architecture. For such files, the
location of section data in the file must match its location in memory when the
image is loaded, so that the physical offset for section data is the same as the RVA.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 20

5.2. COFF Relocations (Object Only)

Object files contain COFF relocations, which specify how the section data should be
modified when placed in the image file and subsequently loaded into memory.

Image files do not contain COFF relocations, because all referenced symbols have
already been assigned addresses in a flat address space. An image contains
relocation information in the form of base relocations in the .reloc section (unless
the image has the IMAGE_FILE_RELOCS_STRIPPED attribute). For more
information, see section 6.6, "The .reloc Section (Image Only)."

For each section in an object file, an array of fixed-length records holds the
section’s COFF relocations. The position and length of the array are specified in the
section header. Each element of the array has the following format.

Offset Size Feld Description

0 4 VirtualAddress The address ofthe item to which relocation is
applied. This is the offset from the beginning ofthe
section, plus the value of the section’s RVA/Offset
field. See section 4, “Section Table (Section
Headers).” Forexample, if the firstbyte of the
section has an address of 0x10, the third byte has
an address of Ox12.

4 4 SymbolTableindex A zero-based indexinto the symbol table. This
symbol gives the address thatis to be used for the
relocation. If the specified symbol has section
storage class, thenthe symbol’s addressis the
address with the firstsection of the same name.

8 2 Type A value that indicates the kind of relocation that
should be performed. Valid relocation types
depend on machine type. See section5.2.1, “Type
Indicators.”

If the symbol referred to by the SymbolTableindex field has the storage class
IMAGE_SYM_CLASS_SECTION, the symbol’s address is the beginning of the
section. The section is usually in the same file, except when the object file is part of
an archive (library). In that case, the section can be found in any other object file in
the archive that has the same archive-member name as the current object file. (The
relationship with the archive-member name is used in the linking of import tables,
that is, the .idata section.)

5.2.1. Type Indicators

The Type field of the relocation record indicates what kind of relocation should be
performed. Different relocation types are defined for each type of machine.

x64 Processors
The following relocation type indicators are defined for x64 and compatible
processors.

Constant Value Description

IMAGE_REL_AMD64_ABSOLUTE | 0x0000 | The relocationis ignored.

IMAGE_REL_AMD64_ADDR64 0x0001 | The 64-bitVA of the relocation target.

IMAGE_REL_AMD64_ADDR32 0x0002 | The 32-bitVA of the relocation target.

IMAGE_REL_AMD64_ADDR32NB | 0x0003 | The 32-bitaddress withoutanimage base
(RVA).

IMAGE_REL_AMD64_REL32 0x0004 | The 32-bitrelative address from the byte

following the relocation.

IMAGE_REL_AMD64_REL32_1 0x0005 | The 32-bitaddress relative to byte
distance 1 from the relocation.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 21

Constant Value Description
IMAGE_REL_AMD64 REL32_ 2 0x0006 | The 32-bitaddress relative to byte
distance 2 from the relocation.
IMAGE_REL_AMD64 REL32_3 0x0007 | The 32-bitaddress relative to byte
distance 3 from the relocation.
IMAGE_REL_AMD64 REL32 4 0x0008 | The 32-bitaddress relative to byte
distance 4 from the relocation.
IMAGE_REL_AMD64 REL32 5 0x0009 | The 32-bitaddress relative to byte
distance 5 from the relocation.
IMAGE_REL_AMD64_SECTION O0x000A | The 16-bitsectionindex of the section that
contains the target. This is used to support
debugging information.
IMAGE_REL_AMD64_SECREL 0x000B | The 32-bitoffset of the target from the
beginning ofits section. This is used to
supportdebugging information and static
thread local storage.
IMAGE_REL_AMD64_ SECREL7 0x000C | A 7-bitunsigned offsetfrom the base of the
section that contains the target.
IMAGE_REL_AMD64_TOKEN 0x000D | CLRtokens.
IMAGE_REL_AMD64_SREL32 Ox000E | A 32-bitsigned span-dependentvalue
emitted into the object.
IMAGE_REL_AMD64_PAIR 0x000F | A pair that mustimmediatelyfollow every
span-dependentvalue.
IMAGE_REL_AMD64_SSPAN32 0x0010 | A 32-bitsigned span-dependentvalue thatis
applied atlink time.

ARM Processors

The following relocation type indicators are defined for ARM processors.

Constant Value

Description

IMAGE_REL_ARM_ABSOLUTE 0x0000

The relocationis ignored.

IMAGE_REL_ARM_ADDR32 0x0001

The 32-bitVA of the target.

IMAGE_REL_ARM_ADDR32NB 0x0002

The 32-bitRVA of the target.

IMAGE_REL_ARM_BRANCH24 0x0003

The 24-bitrelative displacementto the
target.

IMAGE_REL_ARM_BRANCH11 0x0004

The reference to a subroutine call. The
reference consists oftwo 16-bitinstructions
with 11-bitoffsets.

IMAGE_REL_ARM_SECTION 0X000E

The 16-bitsection index of the section that
contains the target. This is used to support
debugging information.

IMAGE_REL_ARM_SECREL 0X000F

The 32-bitoffset of the target from the
beginning ofits section. This is used to
supportdebugging information and static
thread local storage.

IMAGE_REL_ARM_MOV32 0x0010

The 32-hitVA of the target. This relocation
is applied usinga MOVWW instruction for the
low 16 bits followed by a MOVT for the high
16 bits.

IMAGE_REL_THUMB_MOV32 0x0011

The 32-bitVA of the target. This relocation
is applied using a MOVWW instruction for the
low 16 bits followed by a MOVT for the high
16 bits.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 22

Constant Value Description

IMAGE_REL_THUMB_BRANCH20 | 0x0012 | The instruction is fixed up with the 21-bit
relative displacementto the 2-byte aligned
target. The leastsignificantbit of the
displacementis always zero and is not
stored. This relocation correspondsto a
Thumb-2 32-bitconditional B instruction.

Unused 0x0013

IMAGE_REL_THUMB_BRANCH24 | 0x0014 | The instruction is fixed up with the 25-bit
relative displacementto the 2-byte aligned
target. The leastsignificantbit of the
displacementis zero and is not stored.This
relocation corresponds to a Thumb-2 B
instruction.

IMAGE_REL_THUMB_BLX23 0x0015 | The instructionis fixed up with the 25-bit
relative displacementto the 4-byte aligned
target. The low 2 bits of the displacement
are zero and are not stored.

This relocation corresponds to a Thumb-2
BLX instruction.

IMAGE_REL_ARM_PAIR 0x0016 | The relocationis valid only whenit
immediatelyfollows a ARM_REFHI or
THUMB_REFHI. Its SymbolTablelndex
contains adisplacementand not anindex
into the symbol table.

ARM®64 Processors
The following relocation type indicators are defined for ARM64 processors.

Constant Value Description
IMAGE_REL_ARM64_ABSOLUTE 0x0000 | The relocationis ignored.
IMAGE_REL_ARM64_ADDR32 0x0001 | The 32-bitVA of the target.
IMAGE_REL_ARM64_ADDR32NB 0x0002 | The 32-bitRVA of the target.
IMAGE_REL_ARM64_BRANCH26 0x0003 | The 26-bitrelative displacementto

the target, for B and BL instructions.

IMAGE_REL_ARM64_PAGEBASE_REL21 | 0x0004 | The page base of the target, for
ADRP instruction.

IMAGE_REL_ARM64_REL21 0x0005 | The 12-bitrelative displacementto
the target, for instruction ADR

IMAGE_REL_ARM64_PAGEOFFSET_12A | 0x0006 | The 12-bitpage offset of the target,
for instructions ADD/ADDS
(immediate) with zero shift.

IMAGE_REL_ARM64_PAGEOFFSET_12L | 0x0007 | The 12-bitpage offset of the target,
for instruction LDR (indexed,
unsigned immediate).

IMAGE_REL_ARM64_SECREL 0x0008 | The 32-bitoffset of the target from
the beginning ofits section. This is
used to supportdebugging
information and static thread local
storage.

IMAGE_REL_ARM64_SECREL_LOW12A | 0x0009 | Bit0:11 of section offset of the
target, for instructions ADD/ADDS
(immediate) with zero shift.

IMAGE_REL_ARM64_SECREL_HIGH12A | Ox000A | Bit12:23 of section offset of the
target, for instructions ADD/ADDS
(immediate) with zero shift.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 23

Constant

Value

Description

IMAGE_REL_ARM64_SECREL_LOW12L

0x000B

Bit 0:11 of section offset of the
target, for instruction LDR (indexed,
unsigned immediate).

IMAGE_REL_ARM64_TOKEN

0x000C

CLR token.

IMAGE_REL_ARM64_SECTION

0x000D

The 16-bitsection index of the
section that contains the target. This
is usedto supportdebugging
information.

IMAGE_REL_ARM64_ADDR64

O0x000E

The 64-bitVA of the relocation
target.

IMAGE_REL_ARM64_BRANCH19

0x000F

The 19-bitoffset to the relocation
target, for conditional B instruction.

IMAGE_REL_ARM64_BRANCH14

0x0010

The 14-bitoffset to the relocation
target, for instructions TBZand
TBNZ.

Hitachi SuperH Processors

The following relocation type indicators are defined for SH3 and SH4 processors.
SH5-specific relocations are noted as SHM (SH Media).

Constant

Value

Description

IMAGE_REL_SH3_ABSOLUTE

0x0000

The relocationis ignored.

IMAGE_REL_SH3_DIRECT16

0x0001

A reference to the 16-bitlocation that
contains the VA of the target symbol.

IMAGE_REL_SH3_DIRECT32

0x0002

The 32-bitVA of the target symbol.

IMAGE_REL_SH3_DIRECTS

0x0003

A reference to the 8-bitlocation that
contains the VA of the target symbol.

IMAGE_REL_SH3_DIRECT8_WORD

0x0004

A reference to the 8-bitinstruction that
contains the effective 16-bitVVA of the
target symbol.

IMAGE_REL_SH3_DIRECT8_LONG

0x0005

A reference to the 8-bitinstruction that
contains the effective 32-bitVA of the
target symbol.

IMAGE_REL_SH3_DIRECT4

0x0006

A reference to the 8-bitlocation
whose low 4 bits contain the VA of the
target symbol.

IMAGE_REL_SH3_DIRECT4_WORD

0x0007

A reference to the 8-bitinstruction
whose low 4 bits contain the effective
16-bit VA of the target symbol.

IMAGE_REL_SH3_DIRECT4_LONG

0x0008

A reference to the 8-bitinstruction
whose low 4 bits contain the effective
32-bitVA of the target symbol.

IMAGE_REL_SH3_PCREL8_WORD

0x0009

A reference to the 8-bitinstruction that
contains the effective 16-bitrelative
offset of the target symbol.

IMAGE_REL_SH3_PCREL8_LONG

0x000A

A reference to the 8-bitinstruction that
contains the effective 32-bitrelative
offset of the target symbol.

IMAGE_REL_SH3_PCREL12_WORD

0xo00B

A reference to the 16-bitinstruction
whose low 12 bits contain the
effective 16-bitrelative offset of the
target symbol.

IMAGE_REL_SH3_STARTOF_SECTION

0x000C

A reference to a 32-bitlocation that is
the VA of the section thatcontains the
target symbol.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 24

Constant

Value Description

IMAGE_REL_SH3_SIZEOF_SECTION

0x000D | Areferenceto the 32-bitlocation that
is the size of the section that contains
the target symbol.

IMAGE_REL_SH3_SECTION

OX000E | The 16-bitsectionindex of the section
that contains the target. This is used
to supportdebugging information.

IMAGE_REL_SH3_SECREL

0x000F | The 32-bitoffset of the target from the
beginning ofits section. This is used
to supportdebugging information and
staticthread local storage.

IMAGE_REL_SH3_DIRECT32_NB

0x0010 | The 32-bitRVA of the target symbol.

IMAGE_REL_SH3_GPREL4_LONG

0x0011 | GP relative.

IMAGE_REL_SH3_TOKEN

0x0012 | CLRtoken.

IMAGE_REL_SHM_PCRELPT

0x0013 | The offset from the currentinstruction
in longwords. If the NOMODE bit is
not set, insertthe inverse of the low
bit at bit 32 to selectPTA or PTB.

IMAGE_REL_SHM_REFLO

0x0014 | The low 16 bits of the 32-bit address.

IMAGE_REL_SHM_REFHALF

0x0015 | The high 16 bits of the 32-bit address.

IMAGE_REL_SHM_RELLO

0x0016 | The low 16 bits of the relative
address.

IMAGE_REL_SHM_RELHALF

0x0017 | The high 16 bits of the relative
address.

IMAGE_REL_SHM_PAR

0x0018 | The relocationis valid only wheniit
immediatelyfollows a REFHALF,
RELHALF, or RELLOrelocation. The
SymbolTablelndexfield of the
relocation contains a displacement
and not an indexinto the symbol
table.

IMAGE_REL_SHM_NOMODE

0x8000 | The relocationignores section mode.

IBM PowerPC Processors

The following relocation type indicators

are defined for PowerPC processors.

Constant Value Description

IMAGE_REL_PPC_ABSOLUTE | 0x0000 | The relocationis ignored.

IMAGE_REL_PPC_ADDR64 0x0001 | The 64-bitVA of the target.

IMAGE_REL_PPC_ADDRS32 0x0002 | The 32-bitVA of the target.

IMAGE_REL_PPC_ADDR24 0x0003 | The low 24 bits of the VA of the target. This is
valid only when the target symbolis absolute
and can be sign-extended to its original value.

IMAGE_REL_PPC_ADDR16 0x0004 | The low 16 bits of the target's VA

IMAGE_REL_PPC_ADDR14 0x0005 | The low 14 bits of the target's VA. This is valid
only when the target symbolis absolute and
can be sign-extended to its original value.

IMAGE_REL_PPC_REL24 0x0006 | A 24-bit PC-relative offset to the symbol’s
location.

IMAGE_REL_PPC_REL14 0x0007 | A 14-bit PC-relative offset to the symbol’s
location.

IMAGE_REL_PPC_ADDR32NB | Ox000A | The 32-bitRVA of the target.

IMAGE_REL_PPC_SECREL 0x000B | The 32-bitoffset of the target from the

beginning ofits section. This is used to support
debugginginformation and static thread local
storage.

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 25

Constant

Value

Description

IMAGE_REL_PPC_SECTION

0x000C

The 16-bitsection index of the section that
contains the target. This is used to support
debugginginformation.

IMAGE_REL_PPC_SECREL16

0x000F

The 16-bitoffset of the target from the
beginning ofits section. This is used to support
debugging information and static thread local
storage.

IMAGE_REL_PPC_REFHI

0x0010

The high 16 bits of the target's 32-bitVA. This
is used for the firstinstruction in a two-
instruction sequence thatloads a full address.
This relocation mustbe immediatelyfollowed
by a PAIR relocation whose SymbolTableIndex
contains asigned 16-bitdisplacementthatis
added to the upper 16 bits that was taken from
the location that is being relocated.

IMAGE_REL_PPC_REFLO

0x0011

The low 16 bits of the target's VA

IMAGE_REL_PPC_PAIR

0x0012

A relocation that is valid only when it
immediatelyfollows a REFHI or SECRELHI
relocation. Its SymbolTablelndexcontains a
displacementand notan indexinto the symbol
table.

IMAGE_REL_PPC_SECRELLO

0x0013

The low 16 bits of the 32-bit offset of the target
from the beginning ofits section.

IMAGE_REL_PPC_GPREL

0x0015

The 16-bitsigned displacementofthe target
relative to the GP register.

IMAGE_REL_PPC_TOKEN

0x0016

The CLR token.

Intel 386 Processors

The following relocation type indicators are defined for Intel 386 and compatible

processors.

Constant Value Description

IMAGE_REL_I386_ABSOLUTE | 0x0000 | The relocationis ignored.

IMAGE_REL_I1386_DIR16 0x0001 | Notsupported.

IMAGE_REL_1386_REL16 0x0002 | Notsupported.

IMAGE_REL_1386_DIR32 0x0006 | The target’s 32-bitVA.

IMAGE_REL_I386_DIR32NB 0x0007 | The target's 32-bitRVA.

IMAGE_REL_1386_SEG12 0x0009 | Notsupported.

IMAGE_REL _1386_SECTION Ox000A | The 16-bitsectionindex of the section that
contains the target. This is used to support
debugging information.

IMAGE_REL_I386_SECREL 0x000B | The 32-bitoffset of the target from the
beginning ofits section. This is used to support
debugging information and static thread local
storage.

IMAGE_REL_1386_TOKEN 0x000C | The CLR token.

IMAGE_REL_1386_SECREL7 0x000D | A 7-bit offset from the base of the section that
contains the target.

IMAGE_REL 1386 _REL32 0x0014 | The 32-bitrelative displacementto the target.

This supports the x86 relative branch and call
instructions.

Revision 11 — June 20, 2017

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 26

Intel Itanium Processor Family (IPF)

The following relocation type indicators are defined for the Intel Itanium processor
family and compatible processors. Note that relocations on instructions use the
bundle’s offset and slot number for the relocation offset.

Constant Value

Description

IMAGE_REL_IA64_ABSOLUTE 0x0000

The relocationis ignored.

IMAGE_REL_IA64_IMM14 0x0001

The instruction relocation can be followed by
an ADDEND relocation whose value is
added to the target address before itis
inserted into the specified slotin the IMM14
bundle. The relocation targetmustbe
absolute orthe image mustbe fixed.

IMAGE_REL_IA64_IMM22 0x0002

The instruction relocation can be followed by
an ADDEND relocation whose value is
added to the target address before itis
inserted into the specified slotin the IMM22
bundle. The relocation targetmustbe
absolute orthe image mustbe fixed.

IMAGE_REL_IA64_IMM64 0x0003

The slotnumber ofthis relocation mustbe
one (1). The relocation can be followed by an
ADDEND relocation whose value is added to
the target address before itis stored in all
three slots ofthe IMM64 bundle.

IMAGE_REL_IA64_DIR32 0x0004

The target's 32-bitVA. This is supported only
for LARGEADDRESSAWARE:NO images.

IMAGE_REL_IA64_DIR64 0x0005

The target's 64-bit VA.

IMAGE_REL_IA64_PCREL21B 0x0006

The instruction is fixed up with the 25-bit
relative displacementto the 16-bit aligned
target. The low 4 bits of the displacementare
zero and are not stored.

IMAGE_REL_IA64_PCREL21M 0x0007

The instruction is fixed up with the 25-bit
relative displacementto the 16-bit aligned
target. The low 4 bits of the displacement,
which are zero, are not stored.

IMAGE_REL_IA64_PCREL21F 0x0008

The LSBs of this relocation’s offsetmust
containthe slotnumberwhereas therestis
the bundle address. The bundle is fixed up
with the 25-bitrelative displacementto the
16-bitaligned target. The low 4 bits of the
displacementare zero and are not stored.

IMAGE_REL_IA64_GPREL22 0x0009

The instruction relocation can be followed by
an ADDEND relocation whose value is
added to the target address and then a 22-bit
GP-relative offset that is calculated and
applied to the GPREL22 bundle.

IMAGE_REL_IA64_LTOFF22 O0x000A

The instruction is fixed up with the 22-bit GP-
relative offset to the target symbol’s literal
table entry. The linker creates this literal
table entry based on this relocation and the
ADDEND relocation that mightfollow.

IMAGE_REL_IA64_SECTION 0X000B

The 16-bitsectionindex of the section
contains the target. This is used to support
debugging information.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 27

Constant Value

Description

IMAGE_REL_IA64_SECREL22 0x000C

The instruction is fixed up with the 22-bit
offset of the target from the beginning ofits
section. This relocation can be followed
immediatelyby an ADDEND relocation,
whose Value field contains the 32-bit
unsigned offsetofthe target from the
beginning ofthe section.

IMAGE_REL_IA64_SECREL641 | 0x000D

The slotnumber for this relocation mustbe
one (1). The instructionis fixed up with the
64-bitoffset of the target from the beginning
of its section. This relocation can be followed
immediatelyby an ADDEND relocation
whose Value field contains the 32-bit
unsigned offsetofthe target from the
beginning ofthe section.

IMAGE_REL_IA64_SECREL32 OX000E

The address ofdatato be fixed up with the
32-bitoffset of the target from the beginning
of its section.

IMAGE_REL_IA64_DIR32NB 0x0010

The target's 32-bitRVA.

IMAGE_REL_IA64_SREL14 0x0011

This is applied to a signed 14-bitimmediate
that contains the difference between two
relocatable targets. This is a declarative field
for the linker that indicates thatthe compiler
has alreadyemitted this value.

IMAGE_REL_IA64_SREL22 0x0012

This is applied to a signed 22-bitimmediate
that contains the difference between two
relocatable targets. This is a declarative field
for the linker that indicates thatthe compiler
has alreadyemitted this value.

IMAGE_REL_IA64_SREL32 0x0013

This is applied to a signed 32-bitimmediate
that contains the difference between two
relocatable values. This is adeclarative field
for the linker that indicates thatthe compiler
has alreadyemitted this value.

IMAGE_REL_IA64_UREL32 0x0014

This is applied to an unsigned 32-bit
immediate that contains the difference
between two relocatable values. This is a
declarative field for the linker that indicates
that the compiler has alreadyemitted this
value.

IMAGE_REL_IA64_PCREL60X 0x0015

A 60-bit PC-relative fixup that always stays
as a BRL instruction ofan MLX bundle.

IMAGE_REL_IA64_PCREL60B 0x0016

A 60-bit PC-relative fixup. If the target
displacementfits in a signed 25-bitfield,
convert the entire bundle to an MBB bundle
with NOP.B in slot1 and a 25-bit BR
instruction (with the 4 lowestbits all zero and
dropped)inslot2.

IMAGE_REL_IA64_PCREL60F 0x0017

A 60-bit PC-relative fixup. If the target
displacementfits in a signed 25-bitfield,
convert the entire bundle to an MFB bundle
with NOP.F inslot1 and a 25-bit(4 lowest
bits all zero and dropped) BR instructionin
slot2.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 28

Constant Value

Description

IMAGE_REL_IA64_PCRELG60I 0x0018

A 60-bit PC-relative fixup. If the target
displacementfits in a signed 25-bitfield,
convert the entire bundle to an MIB bundle
with NOP.l inslot1 and a 25-bit (4 lowest
bits all zero and dropped) BR instruction in
slot2.

IMAGE_REL_IA64_PCREL60M 0x0019

A 60-bit PC-relative fixup. If the target
displacementfits in a signed 25-bitfield,
convert the entire bundle to an MMB bundle
with NOP.M in slot1 and a 25-bit (4 lowest
bits all zero and dropped) BR instruction in
slot2.

IMAGE_REL_IA64_IMMGPREL64 | 0x001a

A 64-bit GP-relative fixup.

IMAGE_REL_IA64_TOKEN 0x001b

A CLR token.

IMAGE_REL_IA64_GPREL32 0x001c

A 32-bit GP-relative fixup.

IMAGE_REL_IA64_ADDEND 0x001F

The relocation is valid only when it
immediatelyfollows one ofthe following
relocations: IMM14, IMM22, IMM64,
GPREL22, LTOFF22, LTOFF64,
SECREL22,SECRELG64I,0or SECREL32. Its
value contains the addend to apply to
instructions within a bundle, notfor data.

MIPS Processors

The following relocation type indicators are defined for MIPS processors.

Constant Value

Description

IMAGE_REL_MIPS_ABSOLUTE

0x0000

The relocationis ignored.

IMAGE_REL_MIPS_REFHALF

0x0001

The high 16 bits of the target’'s 32-bit VA.

IMAGE_REL_MIPS_REFWORD

0x0002

The target's 32-bit VA

IMAGE_REL_MIPS_JMPADDR

0x0003

The low 26 bits of the target's VA. This
supports the MIPS J and JAL instructions.

IMAGE_REL_MIPS_REFHI

0x0004

The high 16 bits of the target’'s 32-bitVA.
This is used for the firstinstruction in a two-
instruction sequence thatloads a full
address. This relocation mustbe
immediatelyfollowed by a PAIR relocation
whose SymbolTablelndexcontains a signed
16-bitdisplacementthatis added to the
upper 16 bits that are taken from the
location that is being relocated.

IMAGE_REL_MIPS_REFLO

0x0005

The low 16 bits of the target's VA.

IMAGE_REL_MIPS_GPREL

0x0006

A 16-bit signed displacementofthe target
relative to the GP register.

IMAGE_REL_MIPS_LITERAL

0x0007

The same as IMAGE_REL_MIPS_GPREL.

IMAGE_REL_MIPS_SECTION

0x000A

The 16-bitsection index of the section
contains the target. This is used to support
debugging information.

IMAGE_REL_MIPS_SECREL

0x000B

The 32-bitoffset of the target from the
beginning ofits section. This is used to
supportdebugging information and static
thread local storage.

IMAGE_REL_MIPS_SECRELLO

0x000C

The low 16 bits of the 32-bit offset of the
target from the beginning ofits section.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 29

Constant Value

Description

IMAGE_REL_MIPS_SECRELHI 0x000D

The high 16 bits of the 32-bit offsetof the
target from the beginning ofits section. An
IMAGE_REL_MIPS_PAIR relocation must
immediatelyfollow this one. The
SymbolTablelndexof the PAIR relocation
contains asigned 16-bitdisplacementthat
is added to the upper 16 bits that are taken
from the location that is being relocated.

IMAGE_REL_MIPS_JMPADDR16 | 0x0010

The low 26 bits of the target's VA. This
supports the MIPS16 JAL instruction.

IMAGE_REL_MIPS_REFWORDNB | 0x0022

The target's 32-bitRVA.

IMAGE_REL_MIPS_PAIR 0x0025

The relocationis valid only when it
immediatelyfollows a REFHI or SECRELHI
relocation. Its SymbolTablelndexcontains a
displacementand notan indexinto the
symboltable.

Mitsubishi M32R

The following relocation type indicators are defined for the Mitsubishi M32R

processors.

Constant Value Description

IMAGE_REL_M32R_ABSOLUTE | 0x0000 | The relocationis ignored.

IMAGE_REL_M32R_ADDR32 0x0001 | The target’'s 32-bitVA.

IMAGE_REL_M32R_ADDR32NB | 0x0002 | The target's 32-bitRVA.

IMAGE_REL_M32R_ADDR24 0x0003 | The target’'s 24-bit VA.

IMAGE_REL_M32R_GPREL16 0x0004 | The target's 16-bitoffset from the GP register.

IMAGE_REL_M32R_PCREL24 0x0005 | The target’'s 24-bitoffset from the program
counter (PC), shifted left by 2 bits and sign-
extended

IMAGE_REL_M32R_PCREL16 0x0006 | The target’s 16-bitoffset from the PC, shifted
left by 2 bits and sign-extended

IMAGE_REL_M32R_PCRELS8 0x0007 | The target’'s 8-bitoffset from the PC, shifted
left by 2 bits and sign-extended

IMAGE_REL_M32R_REFHALF 0x0008 | The 16 MSBs of the target VA.

IMAGE_REL_M32R_REFHI 0x0009 | The 16 MSBs of the target VA, adjusted for
LSB sign extension. This is used for the first
instruction in a two-instruction sequence that
loads afull 32-bitaddress. This relocation
mustbe immediatelyfollowed by a PAIR
relocation whose SymbolTablelndexcontains
a signed 16-bitdisplacementthatis added to
the upper 16 bits that are taken from the
location that is being relocated.

IMAGE_REL_M32R_REFLO OX000A | The 16 LSBs of the target VA.

IMAGE_REL_M32R_PAIR 0x000B | The relocation mustfollow the REFHI
relocation. Ilts SymbolTablelndexcontains a
displacementand notan indexinto the symbol
table.

IMAGE_REL_M32R_SECTION 0x000C | The 16-bitsectionindex of the section that
contains the target. This is used to support
debugginginformation.

IMAGE_REL_M32R_SECREL 0x000D | The 32-bitoffset of the target from the
beginning ofits section. This is used to
supportdebugging information and static
thread local storage.

IMAGE_REL_M32R_TOKEN O0x000E | The CLR token.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 30

5.3. COFF Line Numbers (Deprecated)

COFF line numbers are no longer produced and, in the future, will not be
consumed.

COFF line numbers indicate the relationship between code and line humbers in
source files. The Microsoft format for COFF line numbers is similar to standard
COFF, but it has been extended to allow a single section to relate to line numbers in
multiple source files.

COFF line numbers consist of an array of fixed-length records. The location (file
offset) and size of the array are specified in the section header. Each line-number
record is of the following format.

Offset Size Feld Description

0 4 Type (*) This is a union of two fields: SymbolTableIndexand
VirtualAddress. Whether SymbolTableIndexor RVA
is used depends on the value of Linenumber.

4 2 Linenumber When nonzero, this field specifies aone-based line
number. When zero, the Type field is interpreted as a
symbol table index for a function.

The Type field is a union of two 4-byte fields: SymbolTablelndex and
VirtualAddress.

Offset Size Feld Description

0 4 SymbolTablelndex | Used when Linenumberis zero:indexto symbol
table entry for a function. This formatis used to
indicate the function to which a group of line-number
records refers.

0 4 VirtualAddress Used when Linenumberis non-zero:the RVA of the
executable code that corresponds to the source line
indicated. In an objectfile, this contains the VA within
the section.

A line-number record can either set the Linenumber field to zero and point to a
function definition in the symbol table or it can work as a standard line-number entry
by giving a positive integer (line number) and the corresponding address in the
object code.

A group of line-number entries always begins with the first format: the index of a
function symbol. If this is the first line-number record in the section, then itis also
the COMDAT symbol name for the function if the section’s COMDAT flag is set.
See section 5.5.6, “COMDAT Sections (Object Only).” The function’s auxiliary
record in the symbol table has a pointer to the Linenumber field that points to this
same line-number record.

A record that identifies a function is followed by any number of line-number entries
that give actual line-number information (that is, entries with Linenumber greater
than zero). These entries are one-based, relative to the beginning of the function,
and represent every source line in the function except for the first line.

For example, the first line-number record for the following example would specify
the RewerseSign function (SymbolTableindex of RewverseSign and Linenumber set
to zero). Then records with Linenumber values of 1, 2, and 3 would follow,
corresponding to source lines as shown:

// some code precedes ReverseSign function
int ReverseSign(int 1)

1: {
2 return -1 * 1;
3: 1}

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 31

5.4. COFF Symbol Table

The symbol table in this section is inherited from the traditional COFF format. It is
distinct from Microsoft Visual C++® debug information. A file can contain both a
COFF symbol table and Visual C++ debug information, and the two are kept
separate. Some Microsoft tools use the symbol table for limited but important
purposes, such as communicating COMDAT information to the linker. Section

names and file names, as well as code and data symbols, are listed in the symbol
table.

The location of the symbol table is indicated in the COFF header.

The symbol table is an array of records, each 18 bytes long. Each record is either a
standard or auxiliary symbol-table record. A standard record defines a symbol or
name and has the following format.

Offset Size Feld Description

0 8 Name (*) The name of the symbol, represented bya union
of three structures. An array of 8 bytes is used if
the name is notmore than 8 bytes long. For more
information, see section 5.4.1,“Symbol Name
Representation.”

8 4 Value The value that is associated with the symbol. The
interpretation of this field depends on
SectionNumber and StorageClass. A typical
meaning is the relocatable address.

12 2 SectionNumber The signed integer thatidentifies the section,
using aone-based indexinto the section table.
Some values have special meaning, as defined in
section5.4.2, “Section Number Values.”

14 2 Type A number that represents type. Microsoft tools set
this field to 0x20 (function) or 0x0 (not a function).
For more information, see section 5.4.3,“Type
Representation.”

16 1 StorageClass An enumerated value that represents storage
class. Formore information, see section5.4.4,
“Storage Class.”

17 1 NumberOfAuxSymbols | The numberofauxiliary symbol table entries that
follow this record.

Zero or more auxiliary symbol-table records immediately follow each standard
symbol-table record. However, typically not more than one auxiliary symbol-table
record follows a standard symbol-table record (except for .file records with long file
names). Each auxiliary record is the same size as a standard symbol-table record
(18 bytes), but rather than define a new symbol, the auxiliary record gives additional
information on the last symbol defined. The choice of which of seweral formats to
use depends on the StorageClass field. Currently-defined formats for auxiliary
symbol table records are shown in section 5.5, “Auxiliary Symbol Records.”

Tools that read COFF symbol tables must ignore auxiliary symbol records whose
interpretation is unknown. This allows the symbol table format to be extended to
add new auxiliary records, without breaking existing tools.

5.4.1. Symbol Name Representation

The ShortName field in a symbol table consists of 8 bytes that contain the name
itself, if it is not more than 8 bytes long, or the ShortName field gives an offset into

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 32

the string table. To determine whether the name itself or an offset is given, testthe
first 4 bytes for equality to zero.

By conwvention, the names are treated as zero-terminated UTF-8 encoded strings.

Offset Size Held Description

0 8 ShortName | An array of 8 bytes. This array is padded with nulls on the
rightifthe name s less than 8 bytes long.

0 4 Zeroes Afield thatis setto all zeros if the name is longerthan
8 bytes.

4 4 Offset An offsetinto the string table.

5.4.2. Section Number Values

Normally, the Section Value field in a symbol table entry is a one-based index into
the section table. Howewer, this field is a signed integer and can take negative
values. The following values, less than one, have special meanings.

Constant Value Description

IMAGE_SYM_UNDEFINED 0 The symbolrecordis not yet assigned asection. A
value of zero indicates thata reference to an external
symbolis defined elsewhere. Avalue of non-zero is a
common symbol with a size that is specified by the

value.

IMAGE_SYM_ABSOLUTE -1 The symbol has an absolute (hon-relocatable) value
andis notan address.

IMAGE_SYM_DEBUG -2 The symbol provides general type or debugging

information butdoes notcorrespond to a section.
Microsoft tools use this setting along with file
records (storage class FILE).

5.4.3. Type Representation

The Type field of a symbol table entry contains 2 bytes, where each byte represents
type information. The LSB represents the simple (base) data type, and the MSB
represents the complex type, if any:

MSB LSB

Complextype: none, pointer, function, array. | Base type: integer, floating-point,and so on.

The following values are defined for base type, although Microsoft tools generally
do not use this field and set the LSB to 0. Instead, Visual C++ debug information is
used to indicate types. Howewer, the possible COFF values are listed here for
completeness.

Constant Value Description

IMAGE_SYM_TYPE_NULL 0 No type information orunknown base type.
Microsoft tools use this setting

IMAGE_SYM_TYPE_VOID 1 No valid type; used with void pointers and
functions

IMAGE_SYM_TYPE_CHAR 2 A character (signed byte)

IMAGE_SYM_TYPE_SHORT 3 A 2-byte signed integer

IMAGE_SYM_TYPE_INT 4 A natural integertype (normally4 bytes in
Windows)

IMAGE_SYM _TYPE_LONG 5 A 4-byte signed integer

IMAGE_SYM_TYPE_FLOAT 6 A 4-byte floating-pointnumber

IMAGE_SYM_TYPE_DOUBLE 7 An 8-byte floating-pointnumber

IMAGE_SYM_TYPE_STRUCT 8 A structure

IMAGE_SYM_TYPE_UNION 9 A union

IMAGE_SYM_TYPE_ENUM 10 An enumerated type

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 33

Constant Value Description

IMAGE_SYM_TYPE_MOE 11 A memberofenumeration (a specific value)

IMAGE_SYM_TYPE_BYTE 12 A byte; unsigned 1-byte integer

IMAGE_SYM_TYPE_WORD 13 A word; unsigned 2-byte integer

IMAGE_SYM_TYPE_UINT 14 An unsigned integer of natural size (normally,
4 bytes)

IMAGE_SYM_TYPE_DWORD 15 An unsigned 4-byte integer

The most significant byte specifies whether the symbol is a pointer to, function
returning, or array of the base type that is specified in the LSB. Microsoft tools use
this field only to indicate whether the symbol is a function, so that the only two
resulting values are 0x0 and 0x20 for the Type field. Howewer, other tools can use
this field to communicate more information.

It is very important to specify the function attribute correctly. This information is
required for incremental linking to work correctly. For some architectures, the
information may be required for other purposes.

Constant Value Description

IMAGE_SYM_DTYPE_NULL 0 No derived type; the symbolis a simple scalar
variable.

IMAGE_SYM_DTYPE_POINTER 1 The symbolis a pointerto base type.

IMAGE_SYM_DTYPE_FUNCTION | 2 The symbolis afunction that returns a base
type.

IMAGE_SYM_DTYPE_ARRAY 3 The symbolis an array of base type.

5.4.4. Storage Class

The StorageClass field of the symbol table indicates what kind of definition a
symbol represents. The following table shows possible values. Note that the
StorageClass field is an unsigned 1-byte integer. The special value -1 should
therefore be taken to mean its unsigned equivalent, OxFF.

Although the traditional COFF format uses many storage-class values, Microsoft
tools rely on Visual C++ debug format for most symbolic information and generally
use only four storage-class values: EXTERNAL (2), STATIC (3), FUNCTION (101),
and STATIC (103). Except in the second column heading below, “Value” should be
taken to mean the Value field of the symbol record (whose interpretation depends
on the number found as the storage class).

Constant Value Description/interpretation of
the Value field
IMAGE_SYM_CLASS_END_OF_FUNCTION -1 A special symbol thatrepresents

(OXFF) | the end of function, for
debugging purposes.

IMAGE_SYM_CLASS NULL 0 No assigned storage class.

IMAGE_SYM_CLASS_AUTOMATIC 1 The automatic (stack) variable.
The Value field specifies the
stack frame offset.

IMAGE_SYM_CLASS EXTERNAL 2 A value that Microsoft tools use

for external symbols. The Value
field indicates the size if the
sectionnumberis
IMAGE_SYM_UNDEFINED (0).
If the section numberis not zero,
then the Value field specifies the
offset within the section.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 34

Constant

Value

Description/interpretation of
the Value field

IMAGE_SYM_CLASS_STATIC

The offset of the symbol within
the section. If the Value field is
zero, then the symbol represents
a sectionname.

IMAGE_SYM_CLASS_REGISTER

Aregistervariable. The Value
field specifies the register
number.

IMAGE_SYM_CLASS_EXTERNAL_DEF

A symbolthatis defined
externally.

IMAGE_SYM_CLASS_LABEL

A code label thatis defined
within the module. The Value
field specifies the offset of the
symbol within the section.

IMAGE_SYM_CLASS_UNDEFINED_LABEL

A reference to a code label that
is not defined.

IMAGE_SYM_CLASS_MEMBER_OF STRUCT

The structure member. The
Value field specifies the nth
member.

IMAGE_SYM_CLASS_ARGUMENT

A formal argument (parameter)
of a function. The Value field
specifies the nth argument.

IMAGE_SYM_CLASS_STRUCT_TAG

10

The structure tag-name entry.

IMAGE_SYM_CLASS_MEMBER_OF_UNION

11

A unionmember. The Value field
specifies the nthmember.

IMAGE_SYM_CLASS_UNION_TAG

12

The Uniontag-name entry.

IMAGE_SYM_CLASS_TYPE_DEFINITION

13

A Typedef entry.

IMAGE_SYM_CLASS_UNDEFINED_STATIC

14

A static data declaration.

IMAGE_SYM_CLASS_ENUM _TAG

15

An enumerated type tagname
entry.

IMAGE_SYM_CLASS_MEMBER_OF_ENUM

16

A memberofan enumeration.
The Value field specifies the nth
member.

IMAGE_SYM_CLASS_REGISTER_PARAM

17

Aregister parameter.

IMAGE_SYM_CLASS_BIT_FIELD

18

A bit-field reference. The Value
field specifies the nth bitin the
bit field.

IMAGE_SYM_CLASS_BLOCK

100

A .bb (beginning ofblock) or .eb
(end of block) record. The Value
field is the relocatable address of
the code location.

IMAGE_SYM_CLASS_FUNCTION

101

A value that Microsoft tools use
for symbol records thatdefine
the extent of a function: begin
function (.bf), end function (.ef),
and lines in function (.If). For .If
records, the Value field gives the
numberofsource lines inthe
function. For .ef records, the
Value field gives the size of the
function code.

IMAGE_SYM_CLASS_END_OF STRUCT

102

An end-of-structure entry.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 35

Constant Value Description/interpretation of
the Value field
IMAGE_SYM _CLASS FILE 103 A value that Microsoft tools, as

well as traditional COFF format,
use for the source-file symbol
record. The symbol is followed
by auxiliary records that name
the file.

IMAGE_SYM _CLASS_SECTION 104 A definition of a section
(Microsofttools use STATIC
storage class instead).

IMAGE_SYM_CLASS_WEAK_EXTERNAL 105 A weak external. For more
information, see section5.5.3,
“Auxiliary Format3: Weak
Externals.”

IMAGE_SYM_CLASS CLR_TOKEN 107 A CLR token symbol. The name
is an ASCII string that consists
of the hexadecimal value of the
token. For more information, see
section5.5.7, “CLR Token
Definition (ObjectOnly).”

5.5. Auxiliary Symbol Records

Auxiliary symbol table records always follow, and apply to, some standard symbol
table record. An auxiliary record can havwe any format that the tools can recognize,
but 18 bytes must be allocated for them so that symbol table is maintained as an
array of regular size. Currently, Microsoft tools recognize auxiliary formats for the
following kinds of records: function definitions, function begin and end symbols (.bf
and .ef), weak externals, file names, and section definitions.

The traditional COFF design also includes auxiliary-record formats for arrays and
structures. Microsoft tools do not use these, but instead place that symbolic
information in Visual C++ debug format in the debug sections.

5.5.1. Auxiliary Format 1: Function Definitions

A symbol table record marks the beginning of a function definition if it has all of the
following: a storage class of EXTERNAL (2), a Type value that indicates itis a
function (0x20), and a section number that is greater than zero. Note that a symbol
table record that has a section number of UNDEFINED (0) does not define the
function and does not have an auxiliary record. Function-definition symbol records
are followed by an auxiliary record in the format described below:

Offset Size Feld Description
0 4 Tagindex The symbol-table indexof the corresponding .bf
(begin function) symbol record.
4 4 TotalSize The size of the executable code for the function

itself. If the function is inits own section, the
SizeOfRawData in the section header is greater
or equal to this field, depending on alignment
considerations.

8 4 PointerToLinenumber The file offset of the first COFF line-number
entry for the function, or zero if none exists. For
more information, see section 5.3, “COFF Line
Numbers (Deprecated).”

12 4 PointerToNextFunction | The symbol-table indexof the record for the next
function. If the function is the lastin the symbol
table, this field is setto zero.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 36

Offset Size Feld Description

16 | 2 | Unused

5.5.2. Auxiliary Format 2: .bf and .ef Symbols

For each function definition in the symbol table, three items describe the beginning,
ending, and number of lines. Each of these symbols has storage class FUNCTION
(102):

e A symbol record named .bf (begin function). The Value field is unused.

e A symbol record named .If (lines in function). The Value field gives the number
of lines in the function.

e A symbol record named .ef (end of function). The Value field has the same
number as the Total Size field in the function-definition symbol record.

The .bf and .ef symbol records (but not .If records) are followed by an auxiliary
record with the following format:

Offset Size Feld Description
0 4 Unused
4 2 Linenumber The actual ordinal line number (1,2, 3, and so
on) within the source file, corresponding to the
.bf or .ef record.
6 6 Unused
12 4 PointerToNextFunction The symbol-table indexof the next .bf symbol
(.bf only) record. If the function is the lastin the symbol
table, this field is setto zero. It is notused for
.ef records.
16 2 Unused

5.5.3. Auxiliary Format 3: Weak Externals

“Weak externals” are a mechanism for object files that allows flexibility at link time.
A module can contain an unresolved external symbol (sym1), but it can also include
an auxiliary record that indicates that if sym1 is not present at link time, another
external symbol (sym2) is used to resolve references instead.

If a definition of sym1 is linked, then an external reference to the symbol is resolved
normally. If a definition of sym1 is not linked, then all references to the weak
external for syml refer to sym2 instead. The external symbol, sym2, must always
be linked; typically, it is defined in the module that contains the weak reference to
syml.

Weak externals are represented by a symbol table record with EXTERNAL storage
class, UNDEF section number, and a value of zero. The weak-external symbol
record is followed by an auxiliary record with the following format:

Offset Size Feld Description

0 4 Tagindex The symbol-table indexof sym2,the symbol to be linked
if sym1lis notfound.

4 4 Characteristics | A value of

IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY
indicates thatno library search for sym1 should be
performed.

A value of IMAGE_WEAK_EXTERN_SEARCH_LIBRARY
indicates thata library search for sym1 should be
performed.

A value of IMAGE_WEAK_EXTERN_SEARCH_ALIAS
indicates thatsym1is an alias forsym2.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 37

Offset Size Feld Description

8 | 10 | Unused

Note that the Characteristics field is not defined in WINNT.H; instead, the Total Size
field is used.

5.5.4. Auxiliary Format 4: Files

This format follows a symbol-table record with storage class FILE (103). The
symbol name itself should be .file, and the auxiliary record that follows it gives the
name of a source-code file.

Offset Size Feld Description

0 18 File Name An ANSI string that gives the name of the source file. This
is padded with nulls ifit is less than the maximum length.

5.5.5. Auxiliary Format 5: Section Definitions

This format follows a symbol-table record that defines a section. Such a record has
a symbol name that is the name of a section (such as .text or .drectve) and has
storage class STATIC (3). The auxiliary record provides information about the
section to which it refers. Thus, it duplicates some of the information in the section
header.

Offset Size Feld Description

0 4 Length The size of section data; the same as
SizeOfRawData in the section header.

4 2 NumberOfRelocations The number ofrelocation entries for the
section.

6 2 NumberOfLinenumbers | The numberofline-number entries for the
section.

8 4 CheckSum The checksum forcommunal data. It is

applicable ifthe IMAGE_SCN_LNK_COMDAT
flag is setin the section header. For more
information, see section 5.5.6, “COMDAT
Sections (ObjectOnly).”

12 2 Number One-basedindexinto the section table for the
associated section. This is used when the
COMDAT selection settingis 5.

14 1 Selection The COMDAT selection number. This is
applicableifthe sectionis a COMDAT section.

15 3 Unused

5.5.6. COMDAT Sections (Object Only)

The Selection field of the section definition auxiliary format is applicable if the
section is a COMDAT section. A COMDAT section is a section that can be defined
by more than one object file. (The flag IMAGE_SCN_LNK_COMDAT is setin the
Section Flags field of the section header.) The Selection field determines the way in
which the linker resolves the multiple definitions of COMDAT sections.

The first symbol that has the section value of the COMDAT section must be the
section symbol. This symbol has the name of the section, the Value field equal to
zero, the section number of the COMDAT section in question, the Type field equal
to IMAGE_SYM_TYPE_NULL, the Class field equal to
IMAGE_SYM_CLASS_STATIC, and one auxiliary record. The second symbol is
called “the COMDAT symbol” and is used by the linker in conjunction with the
Selection field.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 38

The values for the Selection field are shown below.

Constant

Value

Description

IMAGE_COMDAT_SELECT_NODUPLICATES

1

If this symbolis alreadydefined,
the linkerissuesa "multiply
defined symbol" error.

IMAGE_COMDAT_SELECT_ANY

Any section that defines the
same COMDAT symbol can be
linked; the restare removed.

IMAGE_COMDAT_SELECT_SAME_SIZE

The linker chooses an arbitrary
section among the definitions for
this symbol. If all definitions are
notthe same size, a "multiply
defined symbol"erroris issued.

IMAGE_COMDAT_SELECT_EXACT_MATCH

The linker chooses an arbitrary
section among the definitions for
this symbol. If all definitions do
not match exactly, a "multiply
defined symbol"erroris issued.

IMAGE_COMDAT_SELECT_ASSOCIATIVE

The sectionis linked ifa certain
other COMDAT sectionis linked.
This other sectionis indicated by
the Number field of the auxiliary
symbol record for the section
definition. This setting is useful
for definitions thathave
components in multiple sections
(for example, code inone and
data in another), but where all
mustbe linked or discarded as a
set. The other section with which
this section is associated must
be a COMDAT section;it cannot
be another associative COMDAT
section (thatis, the other section
cannothave
IMAGE_COMDAT_SELECT_AS
SOCIATIVE set).

IMAGE_COMDAT_SELECT_LARGEST

The linker chooses the largest
definition from among all ofthe
definitions for this symbol. If
multiple definitions have this
size, the choice between them is
arbitrary.

5.5.7. CLR Token Definition (Object Only)

This auxiliary symbol generally follows the IMAGE_SYM_CLASS_CLR_TOKEN. It
is used to associate a token with the COFF symbol table’s namespace.

Offset Size Feld Description

0 1 bAuxType Must be
IMAGE_AUX_SYMBOL_TYPE_TOKEN_DEF (1).

1 1 bReserved Reserved, mustbe zero.

2 4 SymbolTablelndex | The symbolindexof the COFF symbol to which this

CLR token definition refers.

6 12 Reserved, mustbe zero.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 39

5.6. COFF String Table

Immediately following the COFF symbol table is the COFF string table. The position

of this table is found by taking the symbol table address in the COFF header and
adding the number of symbols multiplied by the size of a symbol.

At the beginning of the COFF string table are 4 bytes that contain the total size (in
bytes) of the rest of the string table. This size includes the size field itself, so that
the value in this location would be 4 if no strings were present.

Following the size are null-terminated strings that are pointed to by symbols in the
COFF symbol table.

5.7. The Attribute Certificate Table (Image Only)

Attribute certificates can be associated with an image by adding an attribute
certificate table. The attribute certificate table is composed of a set of contiguous,
quadword-aligned attribute certificate entries. Zero padding is inserted between the
original end of the file and the beginning of the attribute certificate table to achieve
this alignment. Each attribute certificate entry contains the following fields.

Offset | Size Field Description

0 4 dwLength Specifies the length of the attribute
certificate entry.

4 2 wRevision Contains the certificate version number. For
details, see the following text.

6 2 wCertificateType | Specifies the type of content in
bCertificate. For details, see the following
text.

8 See the | bCertificate Contains a certificate, such as an

following Authenticode signature. For details, see the
following text.

The \irtual address value from the Certificate Table entry in the Optional Header
Data Directory is a file offset tothe first attribute certificate entry. Subsequent
entries are accessed by advancing that entry’s dwLength bytes, rounded up to an
8-byte multiple, from the start of the current attribute certificate entry. This continues
until the sum of the rounded dwLength values equals the Size value from the
Certificates Table entry in the Optional Header Data Directory. If the sum of the
rounded dwLength values does not equal the Size value, then either the attribute
certificate table or the Size field is corrupted.

For example, if the Optional Header Data Directory’s Certificate Table Entry
contains:

virtual address = 0x5000
size = 0x1000

The first certificate starts at offset 0x5000 from the start of the file on disk. To
advance through all the attribute certificate entries:

1. Add the first attribute certificate's dwlLength value to the starting offset.

2. Round the value from step 1 up to the nearest 8-byte multiple tofind the offset
of the second attribute certificate entry.

3. Add the offset value from step 2 to the second attribute certificate entry's
dwLength value and round up to the nearest 8-byte multiple to determine the
offset of the third attribute certificate entry.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 40

4. Repeat step 3 for each successive certificate until the calculated offset equals
0x6000 (0x5000 start + 0x1000 total size), which indicates that you’'ve walked
the entire table.

Alternatively, you can enumerate the certificate entries by calling the Win32®
ImageEnumerateCertificates function in a loop. For a link to the function's
reference page, see “References.”

Attribute certificate table entries can contain any certificate type, as long as the
entry has the correct dwLength value, a uniqgue wRevision value, and a unique
wCertificateType value. The most common type of certificate table entry is a
WIN_CERTIFICATE structure, which is documented in Wintrust.h and discussed in
the remainder of this section.

The options for the WIN_CERTIFICATE wRevision member include (but are not
limited to) the following.

Value Name Notes

0x0100 | WIN_CERT _REVISION_1 0 | Version 1, legacy version of the
Win_Certificate structure. It is supported
only for purposes of verifying legacy
Authenticode signatures

0x0200 | WIN_CERT_REVISION_2_0 | Version 2 is the current version of the
Win_Certificate structure.

The options for the WIN_CERTIFICATE wCertificateType member include (but are
not limited to) the items in the following table. Note that some values are not
currently supported.

Value Name Notes

0x0001 | WIN_CERT_TYPE_X509 bCertificate contains an
X509 Certificate
Not Supported

0x0002 | WIN_CERT TYPE_PKCS_SIGNED_DATA | bCertificate contains a
PKCS#7 SignedData
structure

0x0003 | WIN_CERT_TYPE_RESERVED_1 Resened

0x0004 | WIN_CERT_TYPE_TS_STACK_SIGNED Terminal Server Protocol
Stack Certificate signing
Not Supported

The WIN_CERTIFICATE structure's bCertificate member contains a variable-
length byte array with the content type specified by wCertificateType. The type
supported by Authenticode is WIN_CERT_TYPE_PKCS_SIGNED_DATA, a
PKCS#7 SignedData structure. For details on the Authenticode digital signature
format, see “Windows Authenticode Portable Executable Signature Format.”

If the bCertificate content does not end on a quadword boundary, the attribute
certificate entry is padded with zeros, from the end of bCertificate to the next
quadword boundary.

The dwLength value is the length of the finalized WIN_CERTIFICATE structure
and is computed as:

dwLength = offsetof (WIN CERTIFICATE, bCertificate) + (size of the
variable-length binary array contained within bCertificate)

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 41

This length should include the size of any padding that is used to satisfy the
requirement that each WIN_CERTIFICATE structure is quadword aligned:

dwLength += (8 - (dwlength & 7)) & 7;

The Certificate Table size—specified in the Certificates Table entry in the
Optional Header Data Directory (section 3.4.3)—includes the padding.

For more information on using the ImageHIp API to enumerate, add, and remove
certificates from PE Files, see “ImageHIp Functions.”

5.7.1. Certificate Data

As stated in the preceding section, the certificates in the attribute certificate table

can contain any certificate type. Certificates that ensure a PE file's integrity may
include a PE image hash.

A PE image hash (or file hash) is similar to a file checksum in that the hash
algorithm produces a message digest that is related to the integrity of a file.
Howewer, a checksum is produced by a simple algorithm and is used primarily to
detect whether a block of memory on disk has gone bad and the values stored
there have become corrupted. A file hash is similar to a checksum in that it also
detects file corruption. However, unlike most checksum algorithms, it is very difficult
to modify a file without changing the file hash from its original unmodified value. A
file hash can thus be used to detect intentional and even subtle modifications to a
file, such as those introduced by viruses, hackers, or Trojan horse programs.

When included in a certificate, the image digest must exclude certain fields in the
PE Image, such as the Checksum and Certificate Table entry in Optional Header
Data Directories. This is because the act of adding a Certificate changes these
fields and would cause a different hash value to be calculated.

The Win32 ImageGetDigestStream function provides a data stream from a target
PE file with which to hash functions. This data stream remains consistent when
certificates are added to or removed from a PE file. Based on the parameters that
are passed to ImageGetDigestStream, other data from the PE image can be
omitted from the hash computation. For a link to the function's reference page, see
"References.”

5.8. Delay-Load Import Tables (Image Only)

These tables were added to the image to support a uniform mechanism for
applications to delay the loading of a DLL until the first call into that DLL. The layout

of the tables matches that of the traditional import tables that are described in
section 6.4, "The .idata Section." Only a few details are discussed here.

5.8.1. The Delay-Load Directory Table

The delay-load directory table is the counterpart to the import directory table. It can
be retrieved through the Delay Import Descriptor entry in the optional header data
directories list (offset 200). The table is arranged as follows:

Offset Size Held Description
0 4 Attributes Must be zero.
4 4 Name The RVA of the name of the DLL to be loaded. The
name residesin the read-onlydata section of the
image.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 42

Offset Size Feld Description

8 4 Module Handle The RVA of the module handle (in the data section of
the image) ofthe DLL to be delay-loaded.Itis used
for storage by the routine thatis supplied to manage

delay-loading.
12 4 Delay Import The RVA of the delay-load importaddress table. For
Address Table more information, see section 5.8.5, "DelayImport
Address Table (IAT)."
16 4 Delay Import The RVA of the delay-load name table, which
Name Table contains the names ofthe imports that mightneed to

be loaded. This matches the layout of the import
name table. For moreinformation, see section 6.4.3,
"Hint/Name Table."

20 4 Bound Delay The RVA of the bound delay-load address table, ifit
ImportTable exists.

24 4 Unload Delay The RVA of the unload delay-load address table, ifit
ImportTable exists. This is an exact copy of the delayimport

address table. If the caller unloads the DLL, this table
should be copied back over the delay importaddress
table sothat subsequentcalls to the DLL continue to
use the thunking mechanism correctly.

28 4 Time Stamp The timestamp ofthe DLL to which this image has
beenbound.

The tables that are referenced in this data structure are organized and sorted just
as their counterparts are for traditional imports. For details, see section 6.4, "The
.idata Section."

5.8.2. Attributes

As yet, no attribute flags are defined. The linker sets this field to zero in the image.
This field can be used to extend the record by indicating the presence of new fields,
or it can be used to indicate behaviors to the delay or unload helper functions.

5.8.3. Name

The name of the DLL to be delay-loaded resides in the read-only data section of the
image. It is referenced through the szName field.

5.8.4. Module Handle

The handle of the DLL to be delay-loaded is in the data section of the image. The
phmod field points to the handle. The supplied delay-load helper uses this location to
store the handle to the loaded DLL.

5.8.5. Delay Import Address Table

The delay import address table (IAT) is referenced by the delay import descriptor
through the pIAT field. The delay-load helper updates these pointers with the real
entry points so that the thunks are no longer in the calling loop. The function
pointers are accessed by using the expression pINT->ul.Function.

5.8.6. Delay Import Name Table

The delay import nhame table (INT) contains the names of the imports that might
require loading. They are ordered in the same fashion as the function pointers in the
IAT. They consist of the same structures as the standard INT and are accessed by
using the expression pINT->ul.AddressOfData->Name[0] .

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 43

5.8.7. Delay Bound Import Address Table and Time Stamp

The delay bound import address table (BIAT) is an optional table of
IMAGE_THUNK_DATA items that is used along with the timestamp field of the
delay-load directory table by a post-process binding phase.

5.8.8. Delay Unload Import Address Table

The delay unload import address table (UIAT) is an optional table of
IMAGE_THUNK_DATA items that the unload code uses to handle an explicit
unload request. It consists of initialized data in the read-only section that is an exact
copy of the original IAT that referred the code to the delay-load thunks. On the

unload request, the library can be freed, the *phmod cleared, and the UIAT written
over the IAT to restore ewerything to its preload state.

6. Special Sections

Typical COFF sections contain code or data that linkers and Microsoft Win32®

loaders process without special knowledge of the section contents. The contents
are relevant only to the application that is being linked or executed.

Howewer, some COFF sections have special meanings when found in object files or
image files. Tools and loaders recognize these sections because they have special
flags setin the section header, because special locations in the image optional
header point to them, or because the section name itself indicates a special function
of the section. (Even if the section name itself does not indicate a special function of
the section, the section name is dictated by convention, so the authors of this
specification can refer to a section name in all cases.)

The reserved sections and their attributes are described in the table below, followed
by detailed descriptions for the section types that are persisted into executables and
the section types that contain metadata for extensions.

Section Content Characteristics
Name
bss Uninitialized data (free format) | IMAGE_SCN_CNT_UNINITIALIZED_DATA |

IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.cormeta CLR metadata that indicates IMAGE_SCN_LNK_INFO
that the object file contains
managed code

data Initialized data (free format) IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.debug$F | Generated FPO debug IMAGE_SCN_CNT_INITIALIZED_DATA |
information (objectonly, x86 IMAGE_SCN_MEM_READ |
architecture only, and now IMAGE_SCN_MEM_DISCARDABLE
obsolete)

.debug$P | Precompiled debug types IMAGE_SCN_CNT_INITIALIZED_DATA |
(objectonly) IMAGE_SCN_MEM_READ |

IMAGE_SCN_MEM_DISCARDABLE

.debug$s Debug symbols (object only) IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM DISCARDABLE

.debug$T Debug types (objectonly) IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE

.drective Linker options IMAGE_SCN_LNK_INFO

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 44

Section Content Characteristics
Name
.edata Export tables IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ
.idata Importtables IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE
adlsym Includes registered SEH IMAGE_SCN_LNK_INFO
(image only) to supportIDL
attributes. For information, see
"IDL Attributes" in
"References" at the end of this
specification.
.pdata Exception information IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ
.rdata Read-onlyinitialized data IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ
reloc Image relocations IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE
rsrc Resource directory IMAGE_SCN_CNT_INITIALIZED_DATA |
IMAGE_SCN_MEM_READ
.sbss GP-relative uninitialized data IMAGE_SCN_CNT_UNINITIALIZED_DATA |
(free format) IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE |
IMAGE _SCN_GPREL
The IMAGE_SCN_GPREL flag should be set
for IA64 architectures only; this flag is not
valid for other architectures. The
IMAGE_SCN_GPREL flag is for object files
only; when this section type appears inan
image file,the IMAGE_SCN_GPREL flag
mustnotbe set.
.sdata GP-relative initialized data IMAGE_SCN_CNT_INITIALIZED_DATA |
(free format) IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE |
IMAGE _SCN_GPREL
The IMAGE_SCN_GPREL flag should be set
for IA64 architectures only; this flag is not
valid for other architectures. The
IMAGE_SCN_GPREL flag is for object files
only; when this section type appears inan
image file, the IMAGE_SCN_GPREL flag
mustnotbe set.
.Srdata GP-relative read-only data IMAGE_SCN_CNT_INITIALIZED_DATA |
(free format) IMAGE_SCN_MEM_READ |
IMAGE _SCN_GPREL
The IMAGE_SCN_GPREL flag should be set
for I1A64 architectures only; this flag is not
valid for other architectures. The
IMAGE_SCN_GPREL flag is for object files
only; when this section type appears inan
image file, the IMAGE_SCN_GPREL flag
mustnotbe set.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 45

Section Content Characteristics

Name

.sxdata Registered exception handler | IMAGE_SCN_LNK_INFO
data (free formatand Contains the symbol indexof each of the
x86/object only) exception handlers being referred to by the

code in that object file. The symbol can be for
an UNDEF symbol or one thatis defined in
that module.

text Executable code (free format) | IMAGE_SCN_CNT_CODE |
IMAGE_SCN_MEM_EXECUTE |
IIMAGE_SCN_MEM_READ

tls Thread-local storage (object IMAGE_SCN_CNT_INITIALIZED_DATA |
only) IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE
tls$ Thread-local storage (object IMAGE_SCN_CNT_INITIALIZED_DATA |
only) IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE
.vsdata GP-relative initialized data IMAGE_SCN_CNT_INITIALIZED_DATA |
(free formatand for ARM, IMAGE_SCN_MEM_READ |
SH4, and Thumb architectures | IMAGE_SCN_MEM_WRITE
only)
xdata Exception information (free IMAGE_SCN_CNT_INITIALIZED_DATA |
format) IMAGE_SCN_MEM_READ

Some of the sections listed here are marked “object only” or “image only” to indicate
that their special semantics are relevant only for object files or image files,
respectively. A section that is marked “image only” might still appear in an object file
as a way of getting into the image file, but the section has no special meaning to the
linker, only to the image file loader.

6.1. The .debug Section

The .debug section is used in object files to contain compiler-generated debug
information and in image files to contain all of the debug information that is
generated. This section describes the packaging of debug information in object and
image files.

The next section describes the format of the debug directory, which can be
anywhere in the image. Subsequent sections describe the “groups” in object files
that contain debug information.

The default for the linker is that debug information is not mapped into the address
space of the image. A .debug section exists only when debug information is
mapped in the address space.

6.1.1. Debug Directory (Image Only)

Image files contain an optional debug directory that indicates what form of debug
information is present and where it is. This directory consists of an array of debug
directory entries whose location and size are indicated in the image optional
header.

The debug directory can be in a discardable .debug section (if one exists), or it can
be included in any other section in the image file, or not be in a section at all.

Each debug directory entry identifies the location and size of a block of debug
information. The specified RVA can be zero if the debug information is not covered
by a section header (that is, it resides in the image file and is not mapped into the
run-time address space). If it is mapped, the RVA is its address.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 46

A debug directory entry has the following format:

Offset Size Feld Description
0 4 Characteristics Reserved, mustbe zero.
4 4 TimeDateStamp The time and date that the debug data was created.
8 2 MajorVersion The major version number ofthe debug data format.
10 2 MinorVersion The minorversion number ofthe debug data format.
12 4 Type The formatof debugging information. This field
enables supportof multiple debuggers. Formore
information, see section 6.1.2, “Debug Type.”
16 4 SizeOfData The size of the debug data (not including the debug
directory itself).
20 4 AddressOfRawData | The address ofthe debug data when loaded, relative
to the image base.
24 4 PointerToRawData | The file pointerto the debug data.

6.1.2. Debug Type

The following values are defined for the Type field of the debug directory entry:

Constant Value Description
IMAGE_DEBUG_TYPE_UNKNOWN 0 An unknown value that is ignored
by alltools.

IMAGE_DEBUG_TYPE_COFF

1 The COFF debug information (line
numbers, symboltable, and string
table). This type of debug
information is also pointed to by
fields inthe file headers.

IMAGE_DEBUG_TYPE_CODEVIEW

2 The Visual C++ debug information.

IMAGE_DEBUG_TYPE_FPO

3 The frame pointer omission (FPO)
information. This information tells
the debugger how to interpret
nonstandard stack frames, which
use the EBP registerfor a purpose
other than as a frame pointer.

IMAGE_DEBUG_TYPE_MISC 4 The location of DBG file.
IMAGE_DEBUG_TYPE_EXCEPTION 5 A copy of .pdata section.
IMAGE_DEBUG_TYPE_FIXUP 6 Reserved.
IMAGE_DEBUG_TYPE_OMAP_TO_SRC 7 The mapping from an RVA in image
to an RVA in source image.
IMAGE_DEBUG_TYPE_OMAP_FROM_ SRC 8 The mapping from an RVA in
sourceimage to an RVA in image.
IMAGE_DEBUG_TYPE_BORLAND 9 Reserved for Borland.
IMAGE_DEBUG_TYPE_RESERVED10 10 Reserved.
IMAGE_DEBUG_TYPE_CLSID 11 Reserved.
IMAGE_DEBUG_TYPE_REPRO 16 PE determinism orreproducibility.

If the Type field is set to IMAGE_DEBUG_TYPE_FPO, the debug raw data is an
array in which each member describes the stack frame of a function. Not every
function in the image file must have FPO information defined for it, even though
debug type is FPO. Those functions that do not have FPO information are assumed
to have normal stack frames. The format for FPO information is as follows:

#define
#define
#define

FRAME FPO 0
FRAME TRAP 1
FRAME TSS 2

typedef struct FPO DATA {

DWORD ulOffStart;
DWORD cbProcSize;

Revision 11 — June 20, 2017

// offset 1°° byte of function code
// # bytes in function

© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 47

DWORD cdwLocals; // # bytes in locals/4
WORD cdwParams; // # bytes in params/4
WORD cbProlog : 8; // # bytes in prolog
WORD cbRegs 3; // # regs saved
WORD fHasSEH : 1 // TRUE if SEH in func
WORD fUseBP 1 // TRUE if EBP has been allocated
WORD reserved : 1; // reserved for future use
WORD cbFrame 2; // frame type
} FPO_DATA;

The presence of an entry of type IMAGE_DEBUG_TYPE_REPRO indicates the PE
file is built in a way to achieve determinism or reproducibility. If the input does not
change, the output PE file is guaranteed to be bit-for-bit identical no matter when or
where the PE is produced. Various date/time stamp fields in the PE file are filled
with part or all the bits from a calculated hash value that uses PE file content as
input, and therefore no longer represent the actual date and time when a PE file or
related specific data within the PE is produced. The raw data of this debug entry
may be empty, or may contain a calculated hash value preceded by a four-byte
value that represents the hash value length.

6.1.3. .debug$F (Object Only)

The data in this section has been superseded in Visual C++ version 7.0 and later by
a more extensive set of data that is emitted into a .debug$S subsection.

Object files can contain .debug$F sections whose contents are one or more
FPO_DATA records (frame pointer omission information). See
‘IMAGE_DEBUG_TYPE_FPO” in section 6.1.2, "Debug Type."

The linker recognizes these .debug$F records. If debug information is being

generated, the linker sorts the FPO_DATA records by procedure RVA and
generates a debug directory entry for them.

The compiler should not generate FPO records for procedures that have a standard
frame format.

6.1.4. .debug$s (Object Only)
This section contains Visual C++ debug information (symbolic information).

6.1.5. .debug$P (Object Only)

This section contains Visual C++ debug information (precompiled information).
These are shared types among all of the objects that were compiled by using the
precompiled header that was generated with this object.

6.1.6. .debug$T (Object Only)
This section contains Visual C++ debug information (type information).

6.1.7. Linker Support for Microsoft Debug Information
To support debug information, the linker:

e Gathers all relevant debug data from the .debug$F, debug$s, .debug$P, and
.debug$T sections.

e Processes that data along with the linker-generated debugging information into
the PDB file, and creates a debug directory entry to refer to it.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 48

6.2.The .drectve Section (Object Only)

A section is a directive section if it has the IMAGE_SCN_LNK_INFO flag setin the
section header and has the .drectve section name. The linker removes a .drectve
section after processing the information, so the section does not appear in the
image file that is being linked.

A .drectve section consists of a string of text that can be encoded as ANSI or
UTF-8. If the UTF-8 byte order marker (BOM, a three-byte prefix that consists of
OXEF, 0xBB, and 0xBF) is not present, the directive string is interpreted as ANSI.
The directive string is a series of linker options that are separated by spaces. Each
option contains a hyphen, the option name, and any appropriate attribute. If an
option contains spaces, the option must be enclosed in quotes. The .drectve
section must not have relocations or line numbers.

6.3. The .edata Section (Image Only)

The export data section, named .edata, contains information about symbols that
other images can access through dynamic linking. Exported symbols are generally
found in DLLs, but DLLs can also import symbols.

An oveniew of the general structure of the export section is described below. The
tables described are usually contiguous in the file in the order shown (though this is
not required). Only the export directory table and export address table are required
to export symbols as ordinals. (An ordinal is an export that is accessed directly by
its export address table index.) The name pointer table, ordinal table, and export
name table all exist to support use of export names.

Table Name Description

Export directory table A table with justone row (unlike the debug directory). This table
indicates the locations and sizes ofthe other export tables.

Export address table An array of RVAs of exported symbols. These are the actual
addresses ofthe exported functions and data within the executable
code and data sections. Other image files can importa symbol by
using anindexto this table (an ordinal) or, optionally, by using the
publicname thatcorresponds to the ordinal if a publicname is

defined.

Name pointer table An array of pointers to the public export names, sorted in
ascending order.

Ordinal table An array of the ordinals thatcorrespond to members ofthe name

pointertable. The correspondence is byposition;therefore, the
name pointer table and the ordinal table musthave the same
numberofmembers. Each ordinal is anindexinto the export
address table.

Export name table A series of null-terminated ASCII strings. Members ofthe name
pointer table point into this area. These names are the public
names through which the symbols are imported and exported;they
are not necessarilythe same as the private names thatare used
within the image file.

When another image file imports a symbol by name, the Win32 loader searches the
name pointer table for a matching string. If a matching string is found, the
associated ordinal is identified by looking up the corresponding member in the
ordinal table (that is, the member of the ordinal table with the same index as the
string pointer found in the name pointer table). The resulting ordinal is an index into
the export address table, which gives the actual location of the desired symbol.
Every export symbol can be accessed by an ordinal.

When another image file imports a symbol by ordinal, itis unnecessary to search
the name pointer table for a matching string. Direct use of an ordinal is therefore

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 49

more efficient. However, an export name is easier to remember and does not
require the user to know the table index for the symbol.

6.3.1. Export Directory Table

The export symbol information begins with the export directory table, which
describes the remainder of the export symbol information. The export directory table
contains address information that is used to resolve imports to the entry points
within this image.

Offset Size Feld Description
0 4 Export Flags Reserved, mustbe 0.
4 4 Time/Date Stamp | The time and date that the export data was created.
8 2 Major Version The major version number. The major and minor
version numbers can be setby the user.
10 2 Minor Version The minorversion number.
12 4 Name RVA The address ofthe ASCII string that contains the name
of the DLL. This address is relative to the image base.
16 4 Ordinal Base The starting ordinal number for exports in this image.
This field specifies the starting ordinal number for the
export address table. Itis usuallysetto 1.
20 4 Address Table The number ofentries inthe export address table.
Entries
24 4 NumberofName | The numberofentries inthe name pointertable. This is
Pointers alsothe number of entries in the ordinal table.
28 4 Export Address The address ofthe export address table, relative to the
Table RVA image base.
32 4 Name Pointer The address ofthe export name pointer table, relative
RVA to the image base. The table size is given by the
Numberof Name Pointers field.
36 4 Ordinal Table The address ofthe ordinal table, relative to the image
RVA base.

6.3.2. Export Address Table

The export address table contains the address of exported entry points and

exported data and absolutes. An ordinal number is used as an index into the export
address table.

Each entry in the export address table is a field that uses one of two formats in the
following table. If the address specified is not within the export section (as defined
by the address and length that are indicated in the optional header), the field is an
export RVA, which is an actual address in code or data. Otherwise, the field is a
forwarder RVA, which names a symbol in another DLL.

Offset Size Feld Description
0 4 Export RVA | The address ofthe exported symbolwhen loaded into
memory, relative to the image base. For example, the
address ofan exported function.
0 4 Forwarder The pointerto a null-terminated ASCII string in the export
RVA section. This string mustbe within the range that is given by

the export table data directory entry. See section 3.4.3,
"Optional Header Data Directories (Image Only)." This string
gives the DLL name and the name ofthe export (for
example, “MYDLL.expfunc”) or the DLL name and the
ordinal number ofthe export (for example, “MYDLL #277).

A forwarder RVA exports a definition from some other image, making it appear as if
it were being exported by the current image. Thus, the symbol is simultaneously
imported and exported.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 50

For example, in Kernel32.dll in Windows XP, the export named “HeapAlloc” is
forwarded to the string “NTDLL.RtlAllocateHeap.” This allows applications to use
the Windows XP—specific module Ntdll.dll without actually containing import
references to it. The application’s import table refers only to Kernel32.dll. Therefore,
the application is not specific to Windows XP and can run on any Win32 system.

6.3.3. Export Name Pointer Table

The export name pointer table is an array of addresses (RVAS) into the export

name table. The pointers are 32 bits each and are relative tothe image base. The
pointers are ordered lexically to allow binary searches.

An export name is defined only if the export name pointer table contains a pointer to
it.

6.3.4. Export Ordinal Table

The export ordinal table is an array of 16-bit indexes into the export address table.
The ordinals are biased by the Ordinal Base field of the export directory table. In
other words, the ordinal base must be subtracted from the ordinals to obtain true
indexes into the export address table.

The export name pointer table and the export ordinal table form two parallel arrays
that are separated to allow natural field alignment. These two tables, in effect,
operate as one table, in which the Export Name Pointer column points to a public
(exported) name and the Export Ordinal column gives the corresponding ordinal for
that public name. A member of the export name pointer table and a member of the
export ordinal table are associated by having the same position (index) in their
respective arrays.

Thus, when the export name pointer table is searched and a matching string is
found at position i, the algorithm for finding the symbol’s address is:

i = Search ExportNamePointerTable (ExportName) ;
ordinal = ExportOrdinalTable [i];
SymbolRVA = ExportAddressTable [ordinal - OrdinalBase];

6.3.5. Export Name Table

The export name table contains the actual string data that was pointed to by the
export name pointer table. The strings in this table are public names that other
images can use to import the symbols. These public export names are not
necessarily the same as the private symbol names that the symbols have in their
own image file and source code, although they can be.

Every exported symbol has an ordinal value, which is just the index into the export
address table (plus the Ordinal Base value). Use of export names, however, is
optional. Some, all, or none of the exported symbols can have export names. For
exported symbols that do have export names, corresponding entries in the export
name pointer table and export ordinal table work together to associate each name
with an ordinal.

The structure of the export name table is a series of null-terminated ASCII strings of
variable length.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 51

6.4. The .idata Section

All image files that import symbols, including virtually all executable (EXE) files,
have an .idata section. A typical file layout for the import information follows:

Directory Table

Null Directory Entry

DLL1 Import Lookup Table

Null

DLL2 Import Lookup Table

Null

DLL3 Import Lookup Table

Null

Hint-Name Table

Figure 3. Typical Import Section Layout

6.4.1. Import Directory Table

The import information begins with the import directory table, which describes the
remainder of the import information. The import directory table contains address
information that is used to resolve fixup references to the entry points within a DLL
image. The import directory table consists of an array of import directory entries,
one entry for each DLL to which the image refers. The last directory entry is empty
(filled with null values), which indicates the end of the directory table.

Each import directory entry has the following format:

Offset Size Feld Description
0 4 ImportLookup The RVA of the importlookup table. This table contains
Table RVA a name orordinal for each import. (The name

(Characteristics) | “Characteristics”is usedin Winnt.h, but no longer
describes this field.)

4 4 Time/Date Stamp | The stamp thatis setto zero until the image is bound.
After the image is bound, this field is setto the
time/data stamp ofthe DLL.

8 4 Forwarder Chain | The index of the first forwarder reference.
12 4 Name RVA The address ofan ASCII string that contains the name
of the DLL. This address is relative to the image base.
16 4 ImportAddress The RVA of the importaddress table. The contents of
Table RVA this table are identical to the contents of the import
(Thunk Table) lookup table until the image is bound.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 52

6.4.2. Import Lookup Table

An import lookup table is an array of 32-bit numbers for PE32 or an array of 64-bit
numbers for PE32+. Each entry uses the bit-field format that is described in the
following table. In this format, bit 31 is the most significant bit for PE32 and bit 63 is
the most significant bit for PE32+. The collection of these entries describes all
imports from a given DLL. The last entry is set to zero (NULL) to indicate the end of
the table.

Bit(s) Size Bit field Description
31/63 1 Ordinal/Name | If this bitis set, importby ordinal. Otherwise, import
Flag by name. Bitis masked as 0x80000000 for PE32,
0x8000000000000000 for PE32+.
15-0 16 Ordinal A 16-bit ordinal number. This field is used onlyif
Number the Ordinal/Name Flag bitfieldis 1 (importby
ordinal). Bits 30-15 or 62-15 mustbe 0.
30-0 31 Hint/Name A 31-bit RVA of a hint/name table entry. This field
Table RVA is used only if the Ordinal/Name Flag bitfield is O
(importby name). For PE32+ bits 62-31 mustbe
zero.

6.4.3. Hint/Name Table

One hint/name table suffices for the entire import section. Each entry in the
hint/name table has the following format:

Offset Size Feld Description

0 2 Hint An indexinto the export name pointer table. A matchis
attempted firstwith this value. If it fails, a binary search is
performed on the DLL’s export name pointer table.

2 variable | Name An ASCII string that contains the name to import. This is the
string that mustbe matched to the public nameinthe DLL.
This string is case sensitive and terminated by a null byte.

* Oor1l Pad A trailing zero-pad byte that appears after the trailing null byte,
if necessary, to alignthe next entry on an even boundary.

6.4.4. Import Address Table

The structure and content of the import address table are identical to those of the
import lookup table, until the file is bound. During binding, the entries in the import
address table are overwritten with the 32-bit (for PE32) or 64-bit (for PE32+)
addresses of the symbols that are being imported. These addresses are the actual
memory addresses of the symbols, although technically they are still called “virtual
addresses.” The loader typically processes the binding.

6.5. The .pdata Section

The .pdata section contains an array of function table entries that are used for
exception handling. It is pointed to by the exception table entry in the image data
directory. The entries must be sorted according to the function addresses (the first
field in each structure) before being emitted into the final image. The target platform
determines which of the three function table entry format variations described below
is used.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 53

For 32-bit MIPS images, function table entries have the following format:

Offset Size Feld Description
0 4 Begin Address The VA of the corresponding function.
4 4 End Address The VA of the end of the function.
8 4 Exception Handler The pointerto the exception handlerto be
executed.
12 4 Handler Data The pointerto additional information to be passed
to the handler.
16 4 Prolog End Address | The VA of the end of the function’s prolog.

For the ARM, PowerPC, SH3 and SH4 Windows CE platforms, function table
entries hawe the following format:

Offset Size Feld Description

0 4 Begin Address The VA of the corresponding function.

4 8 bits Prolog Length The number ofinstructions in the function’s prolog.

4 22 bits | Function Length The number ofinstructions in the function.

4 1 bit 32-bitFlag If set, the function consists of 32-bitinstructions. If
clear, the function consists of 16-bitinstructions.

4 1 bit Exception Flag If set, an exception handler exists for the function.
Otherwise, no exception handler exists.

For x64 and Itanium platforms, function table entries have the following format:

Offset Size FHeld Description

0 4 Begin Address The RVA of the corresponding function.
4 4 End Address The RVA of the end of the function.

8 4 Unwind Information | The RVA of the unwind information.

6.6. The .reloc Section (Image Only)

The base relocation table contains entries for all base relocations in the image. The
Base Relocation Table field in the optional header data directories gives the number
of bytes in the base relocation table. For more information, see section 3.4.3,
"Optional Header Data Directories (Image Only)." The base relocation table is
divided into blocks. Each block represents the base relocations for a 4K page. Each
block must start on a 32-bit boundary.

The loader is not required to process base relocations that are resolved by the
linker, unless the load image cannot be loaded at the image base that is specified in
the PE header.

6.6.1. Base Relocation Block
Each base relocation block starts with the following structure:

Offset Size Feld Description

0 4 Page RVA | The image base plus the page RVA is added to each offset
to create the VA where the base relocation mustbe applied.

4 4 Block Size The total number of bytes in the base relocation block,

including the Page RVA and Block Size fields and the
Type/Offset fields that follow.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 54

The Block Size field is then followed by any number of Type or Offset field entries.
Each entry is a WORD (2 bytes) and has the following structure:

Offset Size Feld Description

0 4 bits Type Stored in the high 4 bits of the WORD, a value that

indicates the type of base relocation to be applied. For more
information, see section 6.6.2, “Base Relocation Types.”

0 12 bits | Offset Stored in the remaining 12 bits of the WORD, an offset from

the starting address thatwas specified in the Page RVA
field for the block. This offset specifies where the base
relocation is to be applied.

To apply a base relocation, the difference is calculated between the preferred base
address and the base where the image is actually loaded. If the image is loaded at
its preferred base, the difference is zero and thus the base relocations do not have

to be applied.

6.6.2. Base Relocation Types

Constant

Value

Description

IMAGE_REL_BASED_ABSOLUTE

The base
relocation is
skipped. This
type can be used
to pad a block.

IMAGE_REL_BASED_HIGH

The base
relocation adds
the high 16 bits
of the difference
to the 16-bit field
at offset. The 16-
bit field
represents the
high value of a
32-bitword.

IMAGE_REL_BASED_LOW

The base
relocation adds
the low 16 bits of
the difference to
the 16-bitfield at
offset. The 16-bit
field represents
the low half of a
32-bitword.

IMAGE_REL_BASED_HIGHLOW

The base
relocation applies
all 32 bits of the
difference to the
32-bitfield at
offset.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 55

Constant

Value

Description

IMAGE_REL_BASED_HIGHADJ

The base
relocation adds
the high 16 bits
of the difference
to the 16-bit field
at offset. The 16-
bit field
represents the
high value of a
32-bitword. The
low 16 bits of the
32-bitvalue are
storedinthe 16-
bit word that
follows this base
relocation. This
means thatthis
baserelocation
occupies two
slots.

IMAGE_REL_BASED_MIPS_JMPADDR

The relocation
interpretation is
dependentonthe
machine type.
When the
machine type is
MIPS, the base
relocation applies
to a MIPS jump
instruction.

IMAGE_REL_BASED_ARM_MOV32

This relocation is
meaningful only
when the
machine type is
ARM or Thumb.
The base
relocation applies
the 32-bit
address ofa
symbol across a
consecutive
MOVW/MOVT
instruction pair.

IMAGE_REL_BASED_RISCV_HIGH20

This relocationis
only meaningful
when the
machine type is
RISC-V. The
baserelocation
applies to the
high 20 bits of a
32-bitabsolute
address.

Reserved, must
be zero.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 56

Constant Value Description

IMAGE_REL_BASED THUMB_MOV32 7 This relocationis
meaningful only
when the
machine type is
Thumb. The
base relocation
applies the 32-bit
address ofa
symbolto a
consecutive
MOVWW/MOVT
instruction pair.

IMAGE_REL_BASED_RISCV_LOW12I| 7 This relocationis
only meaningful
whenthe
machine type is
RISC-V. The
baserelocation
applies to the low
12 bits of a 32-bit
absolute address
formedin RISC-
V I-type
instruction
format.

IMAGE_REL_BASED_RISCV_LOW12S 8 This relocationis
only meaningful
whenthe
machine type is
RISC-V. The
base relocation
applies to the low
12 bits of a 32-bit
absolute address
formedin RISC-
V S-type
instruction
format.

IMAGE_REL_BASED_MIPS_JMPADDR16 9 The relocation is
only meaningful
whenthe
machine type is
MIPS. The base
relocation applies
to a MIPS16
jumpinstruction.

IMAGE_REL_BASED_DIR64 10 The base
relocation applies
the difference to
the 64-bitfield at
offset.

6.7. The .tIs Section

The .tls section provides direct PE and COFF support for static thread local storage
(TLS). TLS is a special storage class that Windows supports in which a data object
is not an automatic (stack) variable, yetis local to each individual thread that runs
the code. Thus, each thread can maintain a different value for a variable declared
by using TLS.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 57

Note that any amount of TLS data can be supported by using the API calls
TIsAlloc, TIsFree, TIsSetValue, and TIsGetValue. The PE or COFF
implementation is an alternative approach to using the API and has the advantage
of being simpler from the high-level-language programmer’s \iewpoint. This
implementation enables TLS data to be defined and initialized similarly to ordinary
static variables in a program. For example, in Visual C++, a static TLS variable can
be defined as follows, without using the Windows API:

__declspec (thread) int tlsFlag = 1;

To support this programming construct, the PE and COFF .tls section specifies the
following information: initialization data, callback routines for per-thread initialization
and termination, and the TLS index, which are explained in the following discussion.

Note

Statically declared TLS data objects can be used only in statically loaded image
files. This fact makes it unreliable to use static TLS data in a DLL unless you know
that the DLL, or anything statically linked with it, will never be loaded dynamically
with the LoadLibrary API function.

Executable code accesses a static TLS data object through the following steps:

1. Atlink time, the linker sets the Address of Index field of the TLS directory. This
field points to a location where the program expects to receive the TLS index.

The Microsoft run-time library facilitates this process by defining a memory
image of the TLS directory and giving it the special name “__tls_used” (Intel
x86 platforms) or “_tls_used” (other platforms). The linker looks for this memory
image and uses the data there to create the TLS directory. Other compilers that
support TLS and work with the Microsoft linker must use this same technique.

2. When a thread is created, the loader communicates the address of the thread's
TLS array by placing the address of the thread environment block (TEB) in the
FS register. A pointer to the TLS array is at the offset of 0x2C from the
beginning of TEB. This behavior is Intel x86-specific.

3. The loader assigns the value of the TLS index to the place that was indicated
by the Address of Index field.

4. The executable code retrieves the TLS index and also the location of the TLS
array.

5. The code uses the TLS index and the TLS array location (multiplying the index
by 4 and using it as an offset to the array) to get the address of the TLS data
area for the given program and module. Each thread has its own TLS data
area, but this is transparent to the program, which does not need to know how
data is allocated for individual threads.

6. Anindividual TLS data object is accessed as some fixed offset into the TLS
data area.

The TLS array is an array of addresses that the system maintains for each thread.
Each address in this array gives the location of TLS data for a given module (EXE
or DLL) within the program. The TLS index indicates which member of the array to
use. The index is a number (meaningful only to the system) that identifies the
module.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 58

6.7.1. The TLS Directory
The TLS directory has the following format:

Offset Size Held Description
(PE32/ (PE32/
PE32+) PE32+)

0 4/8 Raw Data Start | The starting address ofthe TLS template. The

VA template is a block of data that is used to initialize
TLS data. The system copies all of this data each
time a thread is created, so it mustnot be corrupted.
Note that this address is notan RVA,; it is an address
for which there should be abase relocation in the
.reloc section.

4/8 4/8 Raw Data End | The address ofthe lastbyte of the TLS, except for
VA the zero fill. As with the Raw Data Start VA field, this
is a VA, notan RVA
8/16 4/8 Address of The location to receive the TLS index, which the
Index loader assigns. This location is in an ordinary data

section, soit can be given a symbolicname thatis
accessible to the program.

12/24 4/8 Address of The pointerto an array of TLS callback functions.
Callbacks The array is null-terminated, so ifno callback function
is supported, this field points to 4 bytes set to zero.
For information aboutthe prototype for these
functions, see section 6.7.2,“TLS Callback

Functions.”
16/32 4 Size of Zero The size inbytes of the template, beyond the
Fill initialized data delimited by the Raw Data Start VA

and Raw Data End VA fields. The total template size
should be the same as the total size of TLS datain
the image file. The zero fill is the amountof data that
comes afterthe initialized nonzero data.

20/36 4 Characteristics | The four bits [23:20] describe alignmentinfo.
Possible values are those defined as
IMAGE_SCN_ALIGN_*, whichare alsousedto
describe alignmentofsectionin objectfiles. The
other 28 bits are reserved for future use.

6.7.2. TLS Callback Functions

The program can provide one or more TLS callback functions to support additional

initialization and termination for TLS data objects. A typical use for such a callback
function would be to call constructors and destructors for objects.

Although there is typically no more than one callback function, a callback is
implemented as an array to make it possible to add additional callback functions if
desired. If there is more than one callback function, each function is called in the
order in which its address appears in the array. A null pointer terminates the array.
It is perfectly valid to have an empty list (no callback supported), in which case the
callback array has exactly one member—a null pointer.

The prototype for a callback function (pointed to by a pointer of type
PIMAGE_TLS_CALLBACK) has the same parameters as a DLL entry-point
function:

typedef VOID

(NTAPI *PIMAGE TLS CALLBACK) (
PVOID Dl1lHandle,
DWORD Reason,
PVOID Reserved

)

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 59

The Reserved parameter should be setto zero. The Reason parameter can take
the following values:

Setting Value Description

DLL_PROCESS_ATTACH 1 A new process has started, including the firstthread.

DLL_THREAD_ATTACH 2 A new thread has been created. This notification sent
for all but the firstthread.

DLL_THREAD_DETACH 3 Athread is aboutto be terminated. This notification
sentfor all but the firstthread.

DLL_PROCESS DETACH | O A process is aboutto terminate, including the original
thread.

6.8. The Load Configuration Structure (Image Only)

The load configuration structure IMAGE_LOAD_CONFIG_DIRECTORY) was
formerly used in very limited cases in the Windows NT operating system itself to
describe various features too difficult or too large to describe in the file header or
optional header of the image. Current versions of the Microsoft linker and

Windows XP and later versions of Windows use a new version of this structure for
32-hit x86-based systems that include resernved SEH technology. This provides a
list of safe structured exception handlers that the operating system uses during
exception dispatching. If the handler address resides in an image’s VA range and is
marked as reserved SEH-aware (that is,
IMAGE_DLLCHARACTERISTICS_NO_SEH is clear in the DlICharacteristics field
of the optional header, as described earlier), then the handler must be in the list of
known safe handlers for that image. Otherwise, the operating system terminates the
application. This helps prevent the “x86 exception handler hijacking” exploit that has
been used in the past to take control of the operating system.

The Microsoft linker automatically provides a default load configuration structure to
include the reserved SEH data. If the user code already provides a load
configuration structure, it mustinclude the new resened SEH fields. Otherwise, the
linker cannot include the reserved SEH data and the image is not marked as
containing reserved SEH.

6.8.1. Load Configuration Directory

The data directory entry for a pre-reserved SEH load configuration structure must
specify a particular size of the load configuration structure because the operating
system loader always expects it to be a certain value. In that regard, the sizeis
really only a version check. For compatibility with Windows XP and earlier versions
of Windows, the size must be 64 for x86 images.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

6.8.2. Load Configuration Layout
The load configuration structure has the following layout for 32-bit and 64-bit PE

files:

Microsoft Portable Executable and Common Object File Format Specification - 60

Offset

Size

Feld

Description

0

4

Characteristics

Flags that indicate attributes of the
file, currently unused.

TimeDateStamp

Date andtime stamp value. The

value is represented inthe number
of seconds thathave elapsed since
midnight(00:00:00), January1,

1970, Universal Coordinated Time,
according to the system clock. The
time stamp can be printed by using
the C runtime (CRT) time function.

MajorVersion

Major version number.

10

N

MinorVersion

Minor version number.

12

GlobalFlagsClear

The global loaderflags to clear for
this process as the loader starts the
process.

16

GlobalFlagsSet

The global loader flags to set for
this process as the loader starts the
process.

20

CriticalSectionDefaultTimeout

The defaulttimeoutvalue to use for
this process’s critical sections that
are abandoned.

24

4/8

DeCommitFreeBlockThreshold

Memory that mustbe freed before
itis returnedto the system,in
bytes.

28/32

4/8

DeCommitTotalFreeThreshold

Total amountof free memory,in
bytes.

32/40

4/8

LockPrefixTable

[¥86 only] The VA of a listof
addresses where the LOCK prefix
is used sothatthey canbe
replaced with NOP on single
processormachines.

36/48

4/8

MaximumAllocationSize

Maximum allocation size, in bytes.

40/56

4/8

VirtualMemoryThreshold

Maximum virtual memorysize,in
bytes.

44/64

4/8

ProcessAffinityMask

Setting this field to a non-zero
value is equivalentto calling
SetProcessAffinityMask with this
value during process startup (.exe
only)

48/72

ProcessHeapFlags

Process heap flags thatcorrespond
to the firstargumentofthe
HeapCreate function. These flags
applyto the process heap thatis
created during process startup.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 61

Offset Size Feld Description

52/76 2 CSDVersion The service pack version identifier.

54/78 2 Reserved Must be zero.

56/80 4/8 EditList Reserved for use by the system.

60/88 4/8 SecurityCookie A pointerto a cookie thatis used
by Visual C++ or GS
implementation.

64/96 4/8 SEHandlerTable [¥86 only] The VA of the sorted
table of RVAs of eachvalid, unique
SE handlerinthe image.

68/104 | 4/8 SEHandlerCount [¥86 only] The countof unique
handlers inthe table.

72/112 | 4/8 GuardCFCheckFunctionPointer The VA where Control Flow Guard
check-function pointer is stored.

76/120 | 4/8 GuardCFDispatchFunctionPointer | The VA where Control Flow Guard
dispatch-function pointeris stored.

80/128 | 4/8 GuardCFFunctionTable The VA of the sorted table of RVAs
of each Control Flow Guard
function in the image.

84/136 | 4/8 GuardCFFunctionCount The count of unique RVAs in the
above table.

88/144 | 4 GuardFlags Control Flow Guard related flags.

92/148 | 12 Codelntegrity Code integrity information.

104/160 | 4/8 GuardAddressTakenlatEntryTable | The VA where Control Flow Guard
address taken IAT table is stored.

108/168 | 4/8 GuardAddressTakenlatEntryCount | The count of unique RVAs in the
above table.

112/176 | 4/8 GuardLongJumpTargetTable The VA where Control Flow Guard
long jump targettable is stored.

116/184 | 4/8 GuardLongJumpTargetCount The count of unique RVAs in the

above table.

The GuardFlags field contains a combination of one or more of the following flags
and subfields:

e Module performs control flow integrity checks using system-supplied support.

#define IMAGE_GUARD_CF_INSTRUMENTED 0x00000100

e Module performs control flow and write integrity checks.

#define IMAGE_GUARD_CFW_INSTRUMENTED 0x00000200

e Module contains valid control flow target metadata.

#define IMAGE_GUARD_CF_FUNCTION_TABLE_PRESENT 0x00000400

e Module does not make use of the /GS security cookie.

#define IMAGE_GUARD_SECURITY_COOKIE_UNUSED 0x00000800

e Module supports read only delay load IAT.

#define IMAGE_GUARD_PROTECT_DELAYLOAD_IAT 0x00001000

e Delayload import table in its own .didat section (with nothing else in it) that can
be freely reprotected.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 62

#define IMAGE_GUARD_DELAYLOAD_IAT_IN_ITS_OWN_SECTION 0x00002000

e Module contains suppressed export information. This also infers that the
address taken IAT table is also present in the load config.

#define MAGE_GUARD_CF_EXPORT_SUPPRESSION_INFO_PRESENT 0x00004000

e Module enables suppression of exports.

#define IMAGE_GUARD_CF_ENABLE_EXPORT_SUPPRESSION 0x00008000

e Module contains longjmp target information.
#define IMAGE_GUARD_CF_LONGJUMP_TABLE_PRESENT 0x00010000

e Mask for the subfield that contains the stride of Control Flow Guard function
table entries (that is, the additional count of bytes per table entry).

#define IMAGE_GUARD_CF_FUNCTION_TABLE_SIZE_MASK 0xFO000000

Additionally, the Windows SDK winnt.h header defines this macro for the amount of
bits to right-shift the GuardFlags value to right-justify the Control Flow Guard
function table stride:

#define IMAGE_GUARD_CF_FUNCTION_TABLE_SIZE_SHIFT 28

6.9. The .rsrc Section

Resources are indexed by a multiple-level binary-sorted tree structure. The general
design can incorporate 2**31 lewvels. By convention, however, Windows uses three
lewvels:

Type
Name
Language

A series of resource directory tables relates all of the lewvels in the following way:
Each directory table is followed by a series of directory entries that give the name or
identifier (ID) for that level (Type, Name, or Language lewel) and an address of
either a data description or another directory table. If the address points to a data

description, then the data is a leaf in the tree. If the address points to another
directory table, then that table lists directory entries at the next level down.

A leafs Type, Name, and Language IDs are determined by the path that is taken
through directory tables to reach the leaf. The first table determines Type ID, the

second table (pointed to by the directory entry in the first table) determines Name
ID, and the third table determines Language ID.

The general structure of the .rsrc section is:

Data Description

Resource Directory A series oftables, one for each group of nodes in the tree. All top-
Tables (and Resource | level (Type) nodes are listed in the first table. Entries in this table
Directory Entries) pointto second-level tables. Each second-level tree has the same

Type ID but different Name IDs. Third-level trees have the same
Type and Name IDs but different Language IDs.

Each individual table is immediatelyfollowed bydirectory entries,
in which each entry has a name or numeric identifier and a pointer
to a data description oratable at the next lower level.

Resource Directory Two-byte-aligned Unicode strings, which serve as string data that
Strings is pointed to by directory entries.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common ObjectFile Format Specification - 63

Data Description

Resource Data An array of records, pointed to by tables, that describe the actual

Description size and location of the resource data. These records are the
leaves in the resource-description tree.

Resource Data Raw data of the resource section. The size and location
information in the Resource Data Descriptions field delimitthe
individual regions ofresource data.

6.9.1. Resource Directory Table

Each resource directory table has the following format. This data structure should
be considered the heading of a table because the table actually consists of directory
entries (described in section 6.9.2, "Resource Directory Entries") and this structure:

Offset Size Feld Description
0 4 Characteristics Resource flags. This field is reserved for future use. It
is currently set to zero.
4 4 Time/Date Stamp The time that the resource data was created by the
resource compiler.
8 2 Major Version The majorversion number, setbythe user.
10 2 Minor Version The minorversion number, setbythe user.
12 2 NumberofName The number ofdirectory entries immediatelyfollowing
Entries the table that use strings to identify Type, Name, or
Language entries (depending on the level of the
table).
14 2 Number of ID The number ofdirectory entries immediatelyfollowing
Entries the Name entries thatuse numeric IDs for Type,
Name, or Language entries.

6.9.2. Resource Directory Entries

The directory entries make up the rows of a table. Each resource directory entry
has the following format. Whether the entry is a Name or ID entry is indicated by the
resource directory table, which indicates how many Name and ID entries follow it
(remember that all the Name entries precede all the ID entries for the table). All
entries for the table are sorted in ascending order: the Name entries by case-
sensitive string and the ID entries by numeric value. Offsets are relative to the
address in the IMAGE_DIRECTORY_ENTRY_RESOURCE DataDirectory.

Offset Size Feld Description

0 4 Name Offset The offset of a string that gives the Type, Name, or
Language ID entry, depending on level of table.

0 4 Integer ID A 32-bitintegerthat identifies the Type, Name, or
Language ID entry.

4 4 Data Entry Offset | High bit 0. Address of a Resource Data entry (a leaf).

4 4 Subdirectory High bit 1. The lower 31 bits are the address ofanother

Offset resource directorytable (the next level down).

6.9.3. Resource Directory String

The resource directory string area consists of Unicode strings, which are word-
aligned. These strings are stored together after the last Resource Directory entry
and before the first Resource Data entry. This minimizes the impact of these
variable-length strings on the alignment of the fixed-size directory entries. Each
resource directory string has the following format:

Offset Size FHeld Description
0 2 Length The size of the string, not including length field itself.
2 variable | Unicode String | The variable-length Unicode string data, word-aligned.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 64

6.9.4. Resource Data Entry

Each Resource Data entry describes an actual unit of raw data in the Resource
Data area. A Resource Data entry has the following format:

Offset Size Held Description

0 4 Data RVA The address ofaunit of resource data in the Resource
Data area.

4 4 Size The size, in bytes, of the resource data that is pointed
to by the Data RVA field.

8 4 Codepage The code page that is used to decode code point
values within the resource data. Typically, the code
page would be the Unicode code page.

12 4 Reserved, mustbe 0.

6.10.The .cormeta Section (Object Only)

CLR metadata is stored in this section. It is used to indicate that the object file
contains managed code. The format of the metadata is not documented, but can be
handed to the CLR interfaces for handling metadata.

6.11.The .sxdata Section

The valid exception handlers of an object are listed in the .sxdata section of that
object. The section is marked IMAGE_SCN_LNK_INFO. It contains the COFF
symbol index of each valid handler, using 4 bytes per index.

Additionally, the compiler marks a COFF object as registered SEH by emitting the
absolute symbol “@feat.00” with the LSB of the value field set to 1. A COFF object
with no registered SEH handlers would hawve the “@feat.00” symbol, but no .sxdata
section.

7. Archive (Library)File Format

The COFF archive format provides a standard mechanism for storing collections of

object files. These collections are commonly called libraries in programming
documentation.

The first 8 bytes of an archive consist of the file signature. The rest of the archive
consists of a series of archive members, as follows:

e The first and second members are “linker members.” Each of these members
has its own format as described in section 8.3, "Import Name Type." Typically, a
linker places information into these archive members. The linker members
contain the directory of the archive.

e The third member is the "longnames" member. This member consists of a
series of null-terminated ASCII strings in which each string is the name of
another archive member.

e The rest of the archive consists of standard (object-file) members. Each of
these members contains the contents of one object file in its entirety.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 65

An archive member header precedes each member. The following figure shows the
general structure of an archive:

| Signature :”!<arch>\n” |

Header
1st Linker Member

Header
2nd Linker Member

Header
Longnames Member

Header
Contents of OBJ Fle 1
(COFF format)

Header
Contents of OBJ File 2
(COFF format)

Header
Contents of OBJ Fle N
(COFF format)

Figure 4. Archive File Structure

7.1. Archive File Signature

The archive file signature identifies the file type. Any utility (for example, a linker)
that takes an archive file as input can check the file type by reading this signature.
The signature consists of the following ASCII characters, in which each character
below is represented literally, except for the newline (\n) character:

!<arch>\n

7.2. Archive Member Headers

Each member (linker, longnames, or object-file member) is preceded by a header.
An archive member header has the following format, in which each field is an ASCII
text string that is left justified and padded with spaces to the end of the field. There
is no terminating null character in any of these fields.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 66

Each member header starts on the first even address after the end of the previous
archive member.

Offset Size Feld Description

0 16 Name The name of the archive member, with a slash (/)
appended to terminate the name. If the first characteris a
slash,the name has a special interpretation, as described
in the following table.

16 12 Date The date and time that the archive memberwas created:
This is the ASCII decimal representation ofthe number of
seconds since 1/1/1970 UCT.

28 6 UserID An ASCII decimal representation ofthe userID. This field
does notcontain a meaningful value on Windows
platforms because Microsofttools emitall blanks .

34 6 Group ID An ASCII decimal representation ofthe group ID. This
field does not contain a meaningful value on Windows
platforms because Microsofttools emitall blanks.

40 8 Mode An ASCII octal representation ofthe member’s file mode.
This is the ST_MODE value from the C run-time function
_wstat.

48 10 Size An ASCII decimal representation ofthe total size of the
archive member, notincluding the size of the header.

58 2 End of Header | The two bytes in the C string “\n” (0x60 Ox0A).

The Name field has one of the formats shown in the following table. As mentioned
earlier, each of these strings is left justified and padded with trailing spaces within a
field of 16 bytes:

Contents of Description

Name field

name/ The name of the archive member.

/ The archive memberis one ofthe two linker members. Both of the linker
members have this name.

Il The archive memberis the longnames member, which consists ofa series

of null-terminated ASCII strings. The longnames member is the third archive
memberand mustalways be presenteven if the contents are empty.

n The name of the archive memberis located at offset n within the longnames
member. The number nis the decimal representation ofthe offset. For
example: “/26” indicates thatthe name of the archive memberis located 26
bytes beyond the beginning of the longnames member contents.

7.3. First Linker Member

The name of the first linker member is “\”. The first linker member is included for
backward compatibility. It is not used by current linkers, but its format must be
correct. This linker member provides a directory of symbol names, as does the
second linker member. For each symbol, the information indicates where to find the
archive member that contains the symbol.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 67

The first linker member has the following format. This information appears after the
header:

Offset Size Feld Description

0 4 Numberof | Unsigned long that contains the number of indexed symbols.
Symbols This numberis stored in big-endian format. Each object-file
membertypicallydefines one or more external symbols.

4 4*n | Offsets An array of file offsets to archive member headers, in which n
is equal to the Number of Symbols field. Each numberinthe
array is an unsigned long stored in big-endian format. For
each symbol thatis named in the string table, the
corresponding elementin the offsets array gives the location
of the archive member thatcontains the symbol.

* * String A series of null-terminated strings thatname all the symbols in
Table the directory. Each string begins immediatelyafter the null
characterin the previous string. The number of strings must
be equal to the value of the Number of Symbols field.

The elements in the offsets array must be arranged in ascending order. This fact
implies that the symbols in the string table must be arranged according to the order
of archive members. For example, all the symbols in the first object-file member
would have to be listed before the symbols in the second object file.

7.4. Second Linker Member

The second linker member has the name “\” as does the first linker member.
Although both linker members provide a directory of symbols and archive members
that contain them, the second linker member is used in preference to the first by all
current linkers. The second linker member includes symbol names in lexical order,
which enables faster searching by name.

The second member has the following format. This information appears after the
header:

Offset Size FHeld Description

0 4 Number of An unsigned long that contains the number of archive
Members members.

4 4*m Offsets An array of file offsets to archive member headers,

arranged in ascending order. Each offsetis an
unsigned long. The number m is equal to the value of
the Number of Members field.

* 4 Number of An unsigned long that contains the number of symbols
Symbols indexed. Each object-file member typically defines one

or more external symbols.
* 2*n Indices An array of 1-based indexes (unsigned short) thatmap

symbol names to archive member offsets. The number
n is equal to the Number of Symbols field. For each
symbol thatis named in the string table, the
corresponding elementin the Indices array gives an
indexinto the offsets array. The offsets array, in turn,
gives the location of the archive memberthatcontains
the symbol.

* * String Table A series of null-terminated strings thatname all of the
symbols in the directory. Each string begins
immediatelyafter the null byte in the previous string.
The number of strings mustbe equal to the value of the
Number of Symbols field. This table lists all the symbol
names in ascending lexical order.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 68

7.5. Longnames Member

The name of the longnames member is “\\". The longnames member is a series of
strings of archive member names. A name appears here only when there is

insufficient room in the Name field (16 bytes). The longnames member can be
empty, though its header must appear.

The strings are null-terminated. Each string begins immediately after the null byte in
the previous string.

8. ImportLibrary Format

Traditional import libraries, that is, libraries that describe the exports from one
image for use by another, typically follow the layout described in section 7, "Archive
(Library) File Format." The primary difference is that import library members contain
pseudo-object files instead of real ones, in which each member includes the section
contributions that are required to build the import tables that are described in
section 6.4, "The .idata Section." The linker generates this archive while building
the exporting application.

The section contributions for an import can be inferred from a small set of
information. The linker can either generate the complete, verbose information into
the import library for each member at the time of the library’s creation or write only
the canonical information to the library and let the application that later uses it
generate the necessary data on the fly.

In an import library with the long format, a single member contains the following
information:

Archive member header

File header

Section headers

Data that corresponds to each of the section headers
COFF symbol table

Strings

In contrast, a short import library is written as follows:

Archive member header

Import header

Null-terminated import name string
Null-terminated DLL name string

This is sufficient information to accurately reconstruct the entire contents of the
member at the time of its use.

8.1. Import Header
The import header contains the following fields and offsets:

Offset Size Feld Description

0 2 Sigl Must be IMAGE_FILE_MACHINE_UNKNOWN.
For more information, see section 3.3.1, “Machine
Types.”

2 2 Sig2 Must be OXFFFF.

4 2 Version The structure version.

6 2 Machine The numberthatidentifies the type of target
machine. For more information, see section 3.3.1,
“Machine Types.”

8 4 Time-Date Stamp The time and date that the file was created.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 69

Offset Size Feld Description

12 4 Size Of Data The size of the strings thatfollow the header.

16 2 Ordinal/Hint Either the ordinal or the hint for the import,
determined bythe value in the Name Type field.

18 2 bits | Type The importtype. For specific values and
descriptions, see section 8.2, "Import Type."

3 bits | Name Type The importname type. For specific values and
descriptions, see section 8.3. ImportName Type."
11 bits | Reserved Reserved, mustbe 0.

This structure is followed by two null-terminated strings that describe the imported
symbol’s name and the DLL from which it came.

8.2. Import Type

The following values are defined for the Type field in the import header:

Constant Value Description

IMPORT_CODE 0 Executable code.

IMPORT_DATA 1 Data.

IMPORT_CONST 2 Specified as CONST in the .def file.

These values are used to determine which section contributions must be generated
by the tool that uses the library if it must access that data.

8.3. Import Name Type

The null-terminated import symbol nhame immediately follows its associated import
header. The following values are defined for the Name Type field in the import

header. They indicate how the name is to be used to generate the correct symbols
that represent the import:

Constant

Value Description

IMPORT_ORDINAL

0

The importis by ordinal. This indicates thatthe
value in the Ordinal/Hintfield of the import
headeris the import's ordinal. If this constant
is not specified, then the Ordinal/Hintfield
should always be interpreted as the import’s
hint.

IMPORT_NAME

The importname is identical to the public
symbol name.

IMPORT_NAME_NOPREFIX

The importname is the public symbol name,
but skipping the leading ?, @, or optionally _.

IMPORT_NAME_UNDECORATE

The importname is the public symbol name,
but skipping the leading ?, @, or optionally_,
and truncating at the first @.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 70

Appendix A: Calculating Authenticode PE Image Hash

Seweral attribute certificates are expected to be used to verify the integrity of the
images. Howewer, the most common is Authenticode signature. An Authenticode
signature can be used to verify that the relevant sections of a PE image file have
not been altered in any way from the file’s original form. To accomplish this task,
Authenticode signatures contain something called a PE image hash.

A.1 What is an Authenticode PE Image Hash?

The Authenticode PE image hash, or file hash for short, is similar to a file checksum
in that it produces a small value that relates to the integrity of a file. A checksum is
produced by a simple algorithm and is used primarily to detect memory failures.
That is, it is used to detect whether a block of memory on disk has gone bad and
the values stored there have become corrupted. A file hash is similar to a checksum
in that it also detects file corruption. However, unlike most checksum algorithms, it
is very difficult to modify a file so that it has the same file hash as its original
(unmodified) form. That is, a checksum is intended to detect simple memory failures
that lead to corruption, but a file hash can be used to detect intentional and even
subtle modifications to a file, such as those introduced by \iruses, hackers, or
Trojan horse programs.

In an Authenticode signature, the file hash is digitally signed by using a private key
known only to the signer of the file. A software consumer can verify the integrity of
the file by calculating the hash value of the file and comparing it to the value of
signed hash contained in the Authenticode digital signature. If the file hashes do not
match, part of the file covered by the PE image hash has been modified.

A.2 What is Covered in an Authenticode PE Image Hash?

It is not possible or desirable to include all image file data in the calculation of the
PE image hash. Sometimes it simply presents undesirable characteristics (for
example, debugging information cannot be removed from publicly released files);
sometimes it is simply impossible. For example, it is not possible to include all
information within an image file in an Authenticode signature, then insert the
Authenticode signature that contains that PE image hash into the PE image, and
later be able to generate an identical PE image hash by including all image file data
in the calculation again, because the file now contains the Authenticode signature
that was not originally there.

This appendix illustrates how a PE image hash is calculated and what parts of the
PE image can be modified without invalidating the Authenticode signature.

It is worth noting that the PE image hash for a specific file can be included in a
separate catalog file without including an attribute certificate within the hashed file.
This is relevant, because it becomes possible to invalidate the PE image hash in an
Authenticode-signed catalog file by modifying a PE image that does not actually
contain an Authenticode signature.

Process for Generating the Authenticode PE Image Hash

All data in sections of the PE image that are specified in the section table are
hashed in their entirety except for the following exclusion ranges:

e The file CheckSum field of the Windows-specific fields of the optional
header. This checksum includes the entire file (including any attribute
certificates in the file). In all likelihood, the checksum will be different than the
original value after inserting the Authenticode signature.

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

Microsoft Portable Executable and Common Object File Format Specification - 71

e Information related to attribute certificates. The areas of the PE image that
are related to the Authenticode signature are not included in the calculation of
the PE image hash because Authenticode signatures can be added to or
removed from an image without affecting the owverall integrity of the image. This
is not a problem, because there are user scenarios that depend on re-signing
PE images or adding a time stamp. Authenticode excludes the following
information from the hash calculation:

The Certificate Table field of the optional header data directories.

The Certificate Table and corresponding certificates that are pointed to by
the Certificate Table field listed immediately above.

To calculate the PE image hash, Authenticode orders the sections that are
specified in the section table by address range, then hashes the resulting
sequence of bytes, passing over the exclusion ranges.

¢ Information past of the end of the last section. The area past the last section
(defined by highest offset) is not hashed. This area commonly contains debug
information. Debug information can generally be considered advisory to
debuggers; it does not affect the actual integrity of the executable program. It is
quite literally possible to remove debug information from an image after a
product has been delivered and not affect the functionality of the program. In
fact, this is sometimes done as a disk-saving measure. It is worth noting that
debug information contained within the specified sections of the PE Image
cannot be removed without invaliding the Authenticode signature.

You can use the makecert and signtool tools provided in the Windows Platform

SDK to experiment with creating and verifying Authenticode signatures. For more
information, see "References" at the end of this specification.

References

Downloads and tools for Windows (includes the Windows SDK)
https://developer.microsoft.com/en-us/windows/downloads

Creating, Viewing, and Managing Certificates
https://msdn.microsoft.com/en-us/library/aa37987 2.aspx

Kernel-Mode Code Signing Walkthrough
http://www.microsoft.com/whdc/winlogo/drvsign/kmcs_walkthrough.mspx

SignTool
https://msdn.microsoft.com/en-us/library/aa387764.aspx

Windows Authenticode Portable Executable Signature Format

http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx

ImageHIp Functions
https://msdn.microsoft.com/en-us/library/ms680181.aspx

Revision 11 — June 20, 2017
© 2017 Microsoft Corporation. Allrights reserved.

https://developer.microsoft.com/en-us/windows/downloads
https://msdn.microsoft.com/en-us/library/aa379872.aspx
http://www.microsoft.com/whdc/winlogo/drvsign/kmcs_walkthrough.mspx
https://msdn.microsoft.com/en-us/library/aa387764.aspx
http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx
https://msdn.microsoft.com/en-us/library/ms680181.aspx

